Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Exact solutions for coupled free vibrations of tapered shear-flexible thin-walled composite beams

Piovan, Marcelo TulioIcon ; Filipich, Carlos Pedro; Cortínez, Víctor HugoIcon
Fecha de publicación: 23/09/2008
Editorial: Academic Press Ltd - Elsevier Science Ltd
Revista: Journal of Sound and Vibration
ISSN: 0022-460X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Mecánica

Resumen

In this paper, analytical solutions for the free vibration analysis of tapered thin-walled laminated-composite beams with both closed and open cross-sections are developed. The present study is based on a recently developed model that incorporates in a full form the shear flexibility. The model considers shear flexibility due to bending as well as warping related to non-uniform torsion. The theory is briefly reviewed with the aim to present the equilibrium equations, the related boundary conditions and the constitutive equations. The stacking sequences in the panels of the cross-sections are selected in order to behave according to certain elastic coupling features. Typical laminations for a box-beam such as circumferentially uniform stiffness (CUS) or circumferentially asymmetric stiffness (CAS) configurations are adopted. For open cross-sections, special laminations behaving elastically like the CAS and CUS configurations of closed sections are also taken into account. The exact values (i.e. with arbitrary precision) of frequencies are obtained by means of a generalized power series methodology. A recurrence scheme is introduced with the aim to simplify the algebraic manipulation by shrinking the number of unknown variables. A parametric analysis for different taper ratios, slenderness ratios and stacking sequences is performed. Numerical examples are also carried out focusing attention in the validation of the present theory with respect to 2D FEM computational approaches, as well as to serve as quality test and convergence test of former finite elements schemes.
Palabras clave: Coupled Vibrations , Tapered Beams , Thin-Walled
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 735.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/76524
URL: https://www.sciencedirect.com/science/article/pii/S0022460X08001624
DOI: http://dx.doi.org/10.1016/j.jsv.2008.02.044
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Piovan, Marcelo Tulio; Filipich, Carlos Pedro; Cortínez, Víctor Hugo; Exact solutions for coupled free vibrations of tapered shear-flexible thin-walled composite beams; Academic Press Ltd - Elsevier Science Ltd; Journal of Sound and Vibration; 316; 1-5; 23-9-2008; 298-316
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES