Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Equations for the Missing Boundary Values in the Hamiltonian Formulation of Optimal Control Problems

Costanza, VicenteIcon ; Rivadeneira Paz, Pablo SantiagoIcon ; Spies, Ruben DanielIcon
Fecha de publicación: 02/2011
Editorial: Springer/Plenum Publishers
Revista: Journal Of Optimization Theory And Applications
ISSN: 0022-3239
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Partial differential equations for the unknown final state and initial costate arising in the Hamiltonian formulation of regular optimal control problems with a quadratic final penalty are found. It is shown that the missing boundary conditions for Hamilton's canonical ordinary differential equations satisfy a system of first-order quasilinear vector partial differential equations (PDEs), when the functional dependence of the H-optimal control in phase-space variables is explicitly known. Their solutions are computed in the context of nonlinear systems with ℝn-valued states. No special restrictions are imposed on the form of the Lagrangian cost term. Having calculated the initial values of the costates, the optimal control can then be constructed from on-line integration of the corresponding 2n-dimensional Hamilton ordinary differential equations (ODEs). The off-line procedure requires finding two auxiliary n×n matrices that generalize those appearing in the solution of the differential Riccati equation (DRE) associated with the linear-quadratic regulator (LQR) problem. In all equations, the independent variables are the finite time-horizon duration T and the final-penalty matrix coefficient S, so their solutions give information on a whole two-parameter family of control problems, which can be used for design purposes. The mathematical treatment takes advantage from the symplectic structure of the Hamiltonian formalism, which allows one to reformulate Bellman's conjectures concerning the "invariant-embedding" methodology for two-point boundary-value problems. Results for LQR problems are tested against solutions of the associated differential Riccati equation, and the attributes of the two approaches are illustrated and discussed. Also, nonlinear problems are numerically solved and compared against those obtained by using shooting techniques.
Palabras clave: Boundary-Value Problems , First Order Pdes , Hamilton Equations , Optimal Control , Riccati Equations
Ver el registro completo
 
Archivos asociados
Tamaño: 1.541Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/76390
DOI: http://dx.doi.org/10.1007/s10957-010-9773-3
URL: https://link.springer.com/article/10.1007/s10957-010-9773-3
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Spies, Ruben Daniel; Equations for the Missing Boundary Values in the Hamiltonian Formulation of Optimal Control Problems; Springer/Plenum Publishers; Journal Of Optimization Theory And Applications; 149; 1; 2-2011; 26-46
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES