Mostrar el registro sencillo del ítem

dc.contributor.author
Marchetti, Pablo Andres  
dc.contributor.author
Cerda, Jaime  
dc.date.available
2019-05-15T15:43:53Z  
dc.date.issued
2009-06  
dc.identifier.citation
Marchetti, Pablo Andres; Cerda, Jaime; An approximate mathematical framework for resource-constrained multistage batch scheduling; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 64; 11; 6-2009; 2733-2748  
dc.identifier.issn
0009-2509  
dc.identifier.uri
http://hdl.handle.net/11336/76353  
dc.description.abstract
A rigorous representation of the multistage batch scheduling problem is often useless to even provide a good feasible schedule for many real-world industrial facilities. In order to derive a much simpler scheduling methodology, some usual features of multistage batch plants should be exploited. A common observation in industry is that multistage processing structures usually present a bottleneck stage (BS) controlling the plant output level. Therefore, the quality of the production schedule heavily depends on the proper allocation and sequencing of the tasks performed at the stage BS. Every other part of the processing sequence should be properly aligned with the selected timetable for the bottleneck tasks. A closely related concept with an empirical basis is the usual existence of a common batch sequencing pattern along the entire processing structure that leads to define the constant-batch-ordering rule (CBOR). According to this rule, a single sequencing variable is sufficient to establish the relative ordering of two batches at every processing stage in which both have been allocated to the same resource item. This work introduces a CBOR-based global precedence formulation for the scheduling of order-driven multistage batch facilities. The proposed MILP approximate problem representation is able to handle sequence-dependent changeovers, delivery due dates and limited manufacturing resources other than equipment units. Optimal or near-optimal solutions to several large-scale examples were found at very competitive CPU times.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bottleneck  
dc.subject
Chemical Processes  
dc.subject
Mathematical Modelling  
dc.subject
Multistage Batch Plants  
dc.subject
Optimization  
dc.subject
Scheduling  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An approximate mathematical framework for resource-constrained multistage batch scheduling  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-05-14T13:52:32Z  
dc.journal.volume
64  
dc.journal.number
11  
dc.journal.pagination
2733-2748  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
Chemical Engineering Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ces.2009.03.002