Artículo
The Lagrange-D'Alembert-Poincaré equations and integrability for the Euler's disk
Fecha de publicación:
01/2007
Editorial:
Springer
Revista:
Regular And Chaotic Dynamics
ISSN:
1560-3547
e-ISSN:
1468-4845
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Nonholonomic systems are described by the Lagrange-D'Alembert's principle. The presence of symmetry leads, upon the choice of an arbitrary principal connection, to a reduced D'Alembert's principle and to the Lagrange-D'Alembert-Poincaré reduced equations. The case of rolling constraints has a long history and it has been the purpose of many works in recent times. In this paper we find reduced equations for the case of a thick disk rolling on a rough surface, sometimes called Euler's disk, using a 3-dimensional abelian group of symmetry. We also show how the reduced system can be transformed into a single second order equation, which is an hypergeometric equation.
Palabras clave:
Euler'S Disk
,
Integrability
,
Nonholonomic Systems
,
Symmetry
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Cendra, Hernan; Diaz, Viviana Alejandra; The Lagrange-D'Alembert-Poincaré equations and integrability for the Euler's disk; Springer; Regular And Chaotic Dynamics; 12; 1; 1-2007; 56-67
Compartir
Altmétricas