Mostrar el registro sencillo del ítem

dc.contributor.author
Dorzán, Maria Gisela  
dc.contributor.author
Leguizamon, Mario Guillermo  
dc.contributor.author
Mezura Montes, Efrén  
dc.contributor.author
Hernández Peñalver, Gregorio  
dc.date.available
2016-09-08T19:39:44Z  
dc.date.issued
2014-01  
dc.identifier.citation
Dorzán, Maria Gisela; Leguizamon, Mario Guillermo; Mezura Montes, Efrén; Hernández Peñalver, Gregorio; Approximated algorithms for the Minimum Dilation Triangulation Problem; Springer; Journal Of Heuristics; 20; 2; 1-2014; 189-209  
dc.identifier.issn
1381-1231  
dc.identifier.uri
http://hdl.handle.net/11336/7565  
dc.description.abstract
The complexity status of the Minimum Dilation Triangulation (MDT) problem for a general point set is unknown. Therefore, we focus on the development of approximated algorithms to find high quality triangulations of minimum dilation. For an initial approach, we design a greedy strategy able to obtain approximate solutions to the optimal ones in a simple way. We also propose an operator to generate the neighborhood which is used in different algorithms: Local Search, Iterated Local Search, and Simulated Annealing. Besides, we present an algorithm called Random Local Search where good and bad solutions are accepted using the previous mentioned operator. For the experimental study we have created a set of problem instances since no reference to benchmarks for these problems were found in the literature. We use the Sequential Parameter Optimization Toolbox for tuning the parameters of the SA algorithm. We compare our results with those obtained by the OV-MDT algorithm that uses the obstacle value to sort the edges in the constructive process. This is the only available algorithm found in the literature. Through the experimental evaluation and statistical analysis, we assess the performance of the proposed algorithms using this operator.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Computational Geometry  
dc.subject
Metaheuristics  
dc.subject
Triangulation  
dc.subject
Minimum Dilation  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Approximated algorithms for the Minimum Dilation Triangulation Problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-08-04T17:23:49Z  
dc.journal.volume
20  
dc.journal.number
2  
dc.journal.pagination
189-209  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Dorzán, Maria Gisela. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; Argentina  
dc.description.fil
Fil: Leguizamon, Mario Guillermo. Universidad Nacional de San Luis; Argentina  
dc.description.fil
Fil: Mezura Montes, Efrén. Universidad Veracruzana; México  
dc.description.fil
Fil: Hernández Peñalver, Gregorio. Universidad Politecnica de Madrid; España  
dc.journal.title
Journal Of Heuristics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10732-014-9237-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10732-014-9237-2