Mostrar el registro sencillo del ítem
dc.contributor.author
Dorzán, Maria Gisela
dc.contributor.author
Leguizamon, Mario Guillermo
dc.contributor.author
Mezura Montes, Efrén
dc.contributor.author
Hernández Peñalver, Gregorio
dc.date.available
2016-09-08T19:39:44Z
dc.date.issued
2014-01
dc.identifier.citation
Dorzán, Maria Gisela; Leguizamon, Mario Guillermo; Mezura Montes, Efrén; Hernández Peñalver, Gregorio; Approximated algorithms for the Minimum Dilation Triangulation Problem; Springer; Journal Of Heuristics; 20; 2; 1-2014; 189-209
dc.identifier.issn
1381-1231
dc.identifier.uri
http://hdl.handle.net/11336/7565
dc.description.abstract
The complexity status of the Minimum Dilation Triangulation (MDT) problem for a general point set is unknown. Therefore, we focus on the development of approximated algorithms to find high quality triangulations of minimum dilation. For an initial approach, we design a greedy strategy able to obtain approximate solutions to the optimal ones in a simple way. We also propose an operator to generate the neighborhood which is used in different algorithms: Local Search, Iterated Local Search, and Simulated Annealing. Besides, we present an algorithm called Random Local Search where good and bad solutions are accepted using the previous mentioned operator. For the experimental study we have created a set of problem instances since no reference to benchmarks for these problems were found in the literature. We use the Sequential Parameter Optimization Toolbox for tuning the parameters of the SA algorithm. We compare our results with those obtained by the OV-MDT algorithm that uses the obstacle value to sort the edges in the constructive process. This is the only available algorithm found in the literature. Through the experimental evaluation and statistical analysis, we assess the performance of the proposed algorithms using this operator.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Computational Geometry
dc.subject
Metaheuristics
dc.subject
Triangulation
dc.subject
Minimum Dilation
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Approximated algorithms for the Minimum Dilation Triangulation Problem
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-08-04T17:23:49Z
dc.journal.volume
20
dc.journal.number
2
dc.journal.pagination
189-209
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Dorzán, Maria Gisela. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; Argentina
dc.description.fil
Fil: Leguizamon, Mario Guillermo. Universidad Nacional de San Luis; Argentina
dc.description.fil
Fil: Mezura Montes, Efrén. Universidad Veracruzana; México
dc.description.fil
Fil: Hernández Peñalver, Gregorio. Universidad Politecnica de Madrid; España
dc.journal.title
Journal Of Heuristics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10732-014-9237-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10732-014-9237-2
Archivos asociados