Mostrar el registro sencillo del ítem

dc.contributor.author
Herrera, Lorena Paola  
dc.contributor.author
Texeira González, Marcos Alexis  
dc.contributor.author
Paruelo, José  
dc.date.available
2016-09-07T20:14:03Z  
dc.date.issued
2013-07  
dc.identifier.citation
Herrera, Lorena Paola; Texeira González, Marcos Alexis; Paruelo, José; Fragment size, vegetation structure and physical environment control grassland functioning: a test based on artificial neural networks; Wiley; Applied Vegetation Science; 16; 3; 7-2013; 426-437  
dc.identifier.issn
1402-2001  
dc.identifier.uri
http://hdl.handle.net/11336/7547  
dc.description.abstract
Questions: How do fragment-level characteristics affect remnant grassland functioning in a highly transformed landscape? Are artificial neural networks (ANNs) a better statistical tool to model variations in grassland functioning compared to linear regression models (LRMs)? Location: Tandilia Range, Southern Pampa, Buenos Aires Province, Argentina. Methods: We characterized the dynamics of the vegetation functioning in 60 remnant grasslands by means of the Enhanced Vegetation Index (EVI) data provided by MODIS/Terra images from July 2000 to June 2005. First, we performed a principal component analysis on the fragments mean monthly values of EVI in order to obtain synthetic measures (i.e. the PCA axes) of grassland functioning. Grassland fragments were also characterized by their size, vegetation structure (abundance of the tall-tussock grass Paspalum quadrifarium), and physical environment (soil type -abundance of litholitic soils-, elevation, aspect and slope). The relationship between grassland functioning and these explanatory variables was explored by means of linear regression models (LRMs) and artificial neural networks (ANNs). Results: The first and second PCA axes were related to the annual integral of EVI (EVI-I) and EVI seasonality (EVI-S), respectively; and explained jointly approximately 80% of total variability in mean EVI values. ANNs captured better than regression models the relationships among the proposed controls and the spatial variability of grassland functioning in Southern Pampa. Results showed EVI-I variability was related to all independent variables except aspect. While fragment-size, litholitic soils and slope were negatively related to EVI-I, the abundance of P. quadrifarium showed a positive effect on the spectral index. Grasslands with high seasonality were large, and had high slope and aspect, low abundance of P. quadrifarium and more abundance of litholitic soils. Conclusions: Our results showed that grassland functioning in Southern Pampa, as estimated by EVI, depends on fragment-size, vegetation structure and physical factors (soil type, aspect and slope). Paspalum quadrifarium may be performing an important functional role in this grassland system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Enhanced Vegetation Index  
dc.subject
Fragmentation  
dc.subject
Landscape Structure  
dc.subject
Modis Data  
dc.subject.classification
Ciencias de las Plantas, Botánica  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Fragment size, vegetation structure and physical environment control grassland functioning: a test based on artificial neural networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-02-04T13:58:46Z  
dc.journal.volume
16  
dc.journal.number
3  
dc.journal.pagination
426-437  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Herrera, Lorena Paola. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Departamento de Producción Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires. Estación Experimental Agropecuaria Balcarce; Argentina  
dc.description.fil
Fil: Texeira González, Marcos Alexis.  
dc.description.fil
Fil: Paruelo, José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.journal.title
Applied Vegetation Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/avsc.12009/abstract  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/avsc.12009