Mostrar el registro sencillo del ítem
dc.contributor.author
Gantner, Melisa Edith
dc.contributor.author
Di Ianni, Mauricio Emiliano
dc.contributor.author
Ruiz, María Esperanza
dc.contributor.author
Talevi, Alan
dc.contributor.author
Bruno Blanch, Luis
dc.date.available
2016-09-07T19:23:23Z
dc.date.issued
2013-06
dc.identifier.citation
Gantner, Melisa Edith; Di Ianni, Mauricio Emiliano; Ruiz, María Esperanza; Talevi, Alan; Bruno Blanch, Luis; Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein substrates; Hindawi Publishing Corporation; Biomed; 2013; 6-2013; 1-12
dc.identifier.issn
2314-6141
dc.identifier.uri
http://hdl.handle.net/11336/7529
dc.description.abstract
ATP-Binding Cassette (ABC) efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Moreover, their overexpression is linked to multidrug resistance issues in a diversity of diseases (e.g. cancer). Breast Cancer Resistance Protein (BCRP) is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting the oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions and overcome BCRP-mediated cross-resistance issues. Here, we present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and non-substrates compiled from literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models have been developed through application of Linear Discriminant Analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of Receiving Operating Characteristic curves were applied to obtain the best 2-model combination, which presented 82% of overall accuracy in the training set and 74.5% of overall accuracy in the test set. These are remarkable results considering the broad substrate specificity of BCRP. Moreover, Receiving Operating Characteristic curves may be applied to attain an optimal, context-dependent balance between specificity and sensitivity of the model ensemble.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Hindawi Publishing Corporation
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Breast Cancer Resistance Protein
dc.subject
Abc Transporter
dc.subject
Multidrug Resistance
dc.subject
Bcrp Substrates
dc.subject
2d Computational Models
dc.subject
In Silico Classification Model
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Oncología
dc.subject.classification
Medicina Clínica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein substrates
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-04-28T17:09:09Z
dc.journal.volume
2013
dc.journal.pagination
1-12
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Gantner, Melisa Edith. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico La Plata; Argentina
dc.description.fil
Fil: Di Ianni, Mauricio Emiliano. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico La Plata; Argentina
dc.description.fil
Fil: Ruiz, María Esperanza. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biologicas. Catedra de Control de Calidad de Medicamentos; Argentina
dc.description.fil
Fil: Talevi, Alan. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico La Plata; Argentina
dc.description.fil
Fil: Bruno Blanch, Luis. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico La Plata; Argentina
dc.journal.title
Biomed
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/bmri/2013/863592/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1155/2013/863592
Archivos asociados