Mostrar el registro sencillo del ítem

dc.contributor.author
Gantner, Melisa Edith  
dc.contributor.author
Di Ianni, Mauricio Emiliano  
dc.contributor.author
Ruiz, María Esperanza  
dc.contributor.author
Talevi, Alan  
dc.contributor.author
Bruno Blanch, Luis  
dc.date.available
2016-09-07T19:23:23Z  
dc.date.issued
2013-06  
dc.identifier.citation
Gantner, Melisa Edith; Di Ianni, Mauricio Emiliano; Ruiz, María Esperanza; Talevi, Alan; Bruno Blanch, Luis; Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein substrates; Hindawi Publishing Corporation; Biomed; 2013; 6-2013; 1-12  
dc.identifier.issn
2314-6141  
dc.identifier.uri
http://hdl.handle.net/11336/7529  
dc.description.abstract
ATP-Binding Cassette (ABC) efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Moreover, their overexpression is linked to multidrug resistance issues in a diversity of diseases (e.g. cancer). Breast Cancer Resistance Protein (BCRP) is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting the oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions and overcome BCRP-mediated cross-resistance issues. Here, we present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and non-substrates compiled from literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models have been developed through application of Linear Discriminant Analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of Receiving Operating Characteristic curves were applied to obtain the best 2-model combination, which presented 82% of overall accuracy in the training set and 74.5% of overall accuracy in the test set. These are remarkable results considering the broad substrate specificity of BCRP. Moreover, Receiving Operating Characteristic curves may be applied to attain an optimal, context-dependent balance between specificity and sensitivity of the model ensemble.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Hindawi Publishing Corporation  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Breast Cancer Resistance Protein  
dc.subject
Abc Transporter  
dc.subject
Multidrug Resistance  
dc.subject
Bcrp Substrates  
dc.subject
2d Computational Models  
dc.subject
In Silico Classification Model  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Oncología  
dc.subject.classification
Medicina Clínica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein substrates  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-04-28T17:09:09Z  
dc.journal.volume
2013  
dc.journal.pagination
1-12  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Gantner, Melisa Edith. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico La Plata; Argentina  
dc.description.fil
Fil: Di Ianni, Mauricio Emiliano. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico La Plata; Argentina  
dc.description.fil
Fil: Ruiz, María Esperanza. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biologicas. Catedra de Control de Calidad de Medicamentos; Argentina  
dc.description.fil
Fil: Talevi, Alan. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico La Plata; Argentina  
dc.description.fil
Fil: Bruno Blanch, Luis. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico La Plata; Argentina  
dc.journal.title
Biomed  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/bmri/2013/863592/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1155/2013/863592