Mostrar el registro sencillo del ítem

dc.contributor.author
Dominguez, Federico Daniel  
dc.contributor.author
Zamar, Ricardo César  
dc.contributor.author
Segnorile, Hector Hugo  
dc.contributor.author
Carrasco Gonzalez, Carlos Eugenio  
dc.date.available
2019-04-29T17:35:55Z  
dc.date.issued
2017-06  
dc.identifier.citation
Dominguez, Federico Daniel; Zamar, Ricardo César; Segnorile, Hector Hugo; Carrasco Gonzalez, Carlos Eugenio; Mechanisms of irreversible decoherence in solids; American Physical Society; Physical Review B; 95; 22; 6-2017  
dc.identifier.issn
2469-9969  
dc.identifier.uri
http://hdl.handle.net/11336/75221  
dc.description.abstract
Refocalization sequences in nuclear magnetic resonance (NMR) can in principle reverse the coherent evolution under the secular dipolar Hamiltonian of a closed system. We use this experimental strategy to study the effect of irreversible decoherence on the signal amplitude attenuation in a single-crystal hydrated salt where the nuclear spin system consists of the set of hydration water proton spins having a strong coupling within each pair and a much weaker coupling with other pairs. We study the experimental response of attenuation times with temperature, crystal orientation with respect to the external magnetic field, and rf pulse amplitudes. We find that the observed attenuation of the refocalized signals can be explained by two independent mechanisms: (a) evolution under the nonsecular terms of the reversion Hamiltonian, and (b) an intrinsic mechanism having the attributes of irreversible decoherence induced by the coupling with a quantum environment. To characterize (a) we compare the experimental data with the numerical calculation of the refocalized NMR signal of an artificial, closed spin system. To describe (b) we use a model of the irreversible adiabatic decoherence of spin pairs coupled with a phonon bath which allows evaluating an upper bound for the decoherence times. This model accounts for both the observed dependence of the decoherence times on the eigenvalues of the spin-environment Hamiltonian, and the independence from the sample temperature. This result, then, supports the adiabatic decoherence induced by the dipole-phonon coupling as the explanation for the observed irreversible decay of reverted NMR signals in solids.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Open Quantum Systems And Decoherence  
dc.subject
Nuclear Magnetic Resonance  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Mechanisms of irreversible decoherence in solids  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-04-16T20:40:00Z  
dc.identifier.eissn
2469-9950  
dc.journal.volume
95  
dc.journal.number
22  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Dominguez, Federico Daniel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.description.fil
Fil: Zamar, Ricardo César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Segnorile, Hector Hugo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.description.fil
Fil: Carrasco Gonzalez, Carlos Eugenio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.journal.title
Physical Review B  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevB.95.224423  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevB.95.224423