Mostrar el registro sencillo del ítem
dc.contributor.author
del Pezzo, Leandro Martin
dc.contributor.author
Rossi, Julio Daniel
dc.date.available
2019-04-29T17:28:11Z
dc.date.issued
2017-09
dc.identifier.citation
del Pezzo, Leandro Martin; Rossi, Julio Daniel; Traces for fractional Sobolev spaces with variable exponents; Tusi Mathematical Research Group; Advances in Operator Theory; 2; 4; 9-2017; 435-446
dc.identifier.issn
2538-225X
dc.identifier.uri
http://hdl.handle.net/11336/75218
dc.description.abstract
In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p: Ω × Ω → (1,∞) and q : ∂Ω → (1,∞) are continuous functions such that (n − 1)p(x, x) n − sp(x, x) > q(x) in ∂Ω ∩ {x ∈ Ω: n − sp(x, x) > 0}, then the inequality kfkL q(·) (∂Ω) ≤ C n kfkL p¯(·) (Ω) + [f]s,p(·,·) o holds. Here ¯p(x) = p(x, x) and [f]s,p(·,·) denotes the fractional seminorm with variable exponent, that is given by [f]s,p(·,·) := inf λ > 0: Z Ω Z Ω |f(x) − f(y)| p(x,y) λp(x,y) |x − y| n+sp(x,y) dxdy < 1 and kfkL q(·) (∂Ω) and kfkL p¯(·) (Ω) are the usual Lebesgue norms with variable exponent.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Tusi Mathematical Research Group
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Traces
dc.subject
Fractional
dc.subject
Sobolev
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Traces for fractional Sobolev spaces with variable exponents
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-04-29T14:10:32Z
dc.journal.volume
2
dc.journal.number
4
dc.journal.pagination
435-446
dc.journal.pais
Irán
dc.description.fil
Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.journal.title
Advances in Operator Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.22034/aot.1704-1152
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.aot/1512431720
Archivos asociados