Mostrar el registro sencillo del ítem
dc.contributor.author
Bernardis, Ana Lucia
dc.contributor.author
Pradolini, Gladis Guadalupe
dc.contributor.author
Lorente, María
dc.contributor.author
Riveros, Maria Silvina
dc.date.available
2019-04-27T00:35:37Z
dc.date.issued
2010-08
dc.identifier.citation
Bernardis, Ana Lucia; Pradolini, Gladis Guadalupe; Lorente, María; Riveros, Maria Silvina; Composition of fractional Orlicz maximal operators and A1-weights on spaces of homogeneous type; Springer Heidelberg; Acta Mathematica Sinica-english Series; 26; 8; 8-2010; 1509-1518
dc.identifier.issn
1439-8516
dc.identifier.uri
http://hdl.handle.net/11336/75199
dc.description.abstract
For a Young function Θ with 0 ≤ α < 1, let Mα,Θ be the fractional Orlicz maximal operator defined in the context of the spaces of homogeneous type (X, d, μ) by Mα,Θf(x) = supx∈Bμ(B)α{double pipe}f{double pipe}Θ,B, where {double pipe}f{double pipe}Θ,B is the mean Luxemburg norm of f on a ball B. When α = 0 we simply denote it by MΘ. In this paper we prove that if Φ and Ψ are two Young functions, there exists a third Young function Θ such that the composition Mα,Ψ {ring operator} MΦ is pointwise equivalent to Mα,Θ. As a consequence we prove that for some Young functions Θ, if Mα,Θf <∞ a.e. and δ ∈ (0,1) then (Mα,Θf)δ is an A1-weight.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Heidelberg
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Orlicz Maximal Function
dc.subject
Spaces of Homogeneous Type
dc.subject
Weights
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Composition of fractional Orlicz maximal operators and A1-weights on spaces of homogeneous type
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-04-26T15:39:07Z
dc.journal.volume
26
dc.journal.number
8
dc.journal.pagination
1509-1518
dc.journal.pais
Alemania
dc.journal.ciudad
Heidelberg
dc.description.fil
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral; Argentina
dc.description.fil
Fil: Lorente, María. Universidad de Málaga; España
dc.description.fil
Fil: Riveros, Maria Silvina. Universidad Nacional de Córdoba; Argentina
dc.journal.title
Acta Mathematica Sinica-english Series
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10114-010-8445-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10114-010-8445-4
Archivos asociados