Mostrar el registro sencillo del ítem
dc.contributor.author
Mazzieri, Gisela Luciana
dc.contributor.author
Spies, Ruben Daniel
dc.contributor.author
Temperini, Karina Guadalupe
dc.date.available
2019-04-26T23:51:20Z
dc.date.issued
2010-11
dc.identifier.citation
Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 29; 11-2010; 6275-6283
dc.identifier.issn
2591-3522
dc.identifier.uri
http://hdl.handle.net/11336/75188
dc.description.abstract
The Tikhonov-Phillips method is widely used for regularizing ill-posed problems due to the simplicity of its formulation as an optimization problem. The use of different penalizers in the functionals associated to the corresponding optimization problems has originated a few other methods which can be considered as "variants" of the traditional Tikhonov-Phillips method of order zero. Such is the case for instance of the Tikhonov-Phillips method of order one, the total variation regularization method, etc. The purpose of this article is twofold. First we study the problem of determining general sufficient conditions on the penalizers in generalized Tikhonov-Phillips functionals which guarantee existence and uniqueness of minimizers, in such a way that finding such minimizers constitutes a regularization method, that is, in such a way that these minimizers approximate, as the regularization parameter tend to 0+, a least squares solution of the problem. Secondly we also study the problem of characterizing those limiting least square solutions in terms of properties of the penalizers and finnd conditions which guarantee that the regularization method thus defined is stable under different types of perturbations. Finally, several examples with different penalizers are presented and a few numerical results in an image restoration problem are shown which better illustrate the results.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Asociación Argentina de Mecánica Computacional
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Inverse Problem
dc.subject
Ill-Posed
dc.subject
Regularization
dc.subject
Tikhonov-Phillips
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Regularization of Inverse Ill-Posed Problems with General Penalizing Terms: Applications to Image Restoration
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-04-26T15:37:01Z
dc.journal.volume
29
dc.journal.pagination
6275-6283
dc.journal.pais
Argentina
dc.journal.ciudad
Buenos Aires
dc.description.fil
Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Mecánica Computacional
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.amcaonline.org.ar/ojs/index.php/mc/article/viewFile/3448/3365
Archivos asociados