Artículo
Preconditioning a class of fourth order problems by operator splitting
Fecha de publicación:
09/2010
Editorial:
Springer
Revista:
Numerische Mathematik
ISSN:
0029-599X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We develop preconditioners for systems arising from finite element discretizations of parabolic problems which are fourth order in space. We consider boundary conditions which yield a natural splitting of the discretized fourth order operator into two (discrete) linear second order elliptic operators, and exploit this property in designing the preconditioners. The underlying idea is that efficient methods and software to solve second order problems with optimal computational effort are widely available. We propose symmetric and non-symmetric preconditioners, along with theory and numerical experiments. They both document crucial properties of the preconditioners as well as their practical performance. It is important to note that we neither need Hs-regularity, s > 1, of the continuous problem nor quasi-uniform grids.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio; Preconditioning a class of fourth order problems by operator splitting; Springer; Numerische Mathematik; 118; 2; 9-2010; 197-228
Compartir
Altmétricas