Mostrar el registro sencillo del ítem
dc.contributor.author
Tomassi, Diego Rodolfo
dc.contributor.author
Milone, Diego Humberto
dc.contributor.author
Forzani, Liliana Maria
dc.date.available
2019-04-26T23:01:33Z
dc.date.issued
2010-12
dc.identifier.citation
Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria; Minimum classification error learning for sequential data in the wavelet domain; Elsevier; Pattern Recognition; 43; 12; 12-2010; 3998-4010
dc.identifier.issn
0031-3203
dc.identifier.uri
http://hdl.handle.net/11336/75184
dc.description.abstract
Wavelet analysis has found widespread use in signal processing and many classification tasks. Nevertheless, its use in dynamic pattern recognition have been much more restricted since most of wavelet models cannot handle variable length sequences properly. Recently, composite hidden Markov models which observe structured data in the wavelet domain were proposed to deal with this kind of sequences. In these models, hidden Markov trees account for local dynamics in a multiresolution framework, while standard hidden Markov models capture longer correlations in time. Despite these models have shown promising results in simple applications, only generative approaches have been used so far for parameter estimation. The goal of this work is to take a step forward in the development of dynamic pattern recognizers using wavelet features by introducing a new discriminative training method for this Markov models. The learning strategy relies on the minimum classification error approach and provides re-estimation formulas for fully non-tied models. Numerical experiments on phoneme recognition show important improvement over the recognition rate achieved by the same models trained using maximum likelihood estimation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Hidden Markov Models
dc.subject
Hidden Markov Trees
dc.subject
Discriminative Training
dc.subject
Minimum Classification Error
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Minimum classification error learning for sequential data in the wavelet domain
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-04-26T15:36:46Z
dc.journal.volume
43
dc.journal.number
12
dc.journal.pagination
3998-4010
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Pattern Recognition
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-50HP2NC-2&_user=10&_coverDate=12/31/2010&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=62bc0b99e36a373dc3e
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.patcog.2010.07.010
Archivos asociados