Mostrar el registro sencillo del ítem

dc.contributor.author
Tomassi, Diego Rodolfo  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Forzani, Liliana Maria  
dc.date.available
2019-04-26T23:01:33Z  
dc.date.issued
2010-12  
dc.identifier.citation
Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria; Minimum classification error learning for sequential data in the wavelet domain; Elsevier; Pattern Recognition; 43; 12; 12-2010; 3998-4010  
dc.identifier.issn
0031-3203  
dc.identifier.uri
http://hdl.handle.net/11336/75184  
dc.description.abstract
Wavelet analysis has found widespread use in signal processing and many classification tasks. Nevertheless, its use in dynamic pattern recognition have been much more restricted since most of wavelet models cannot handle variable length sequences properly. Recently, composite hidden Markov models which observe structured data in the wavelet domain were proposed to deal with this kind of sequences. In these models, hidden Markov trees account for local dynamics in a multiresolution framework, while standard hidden Markov models capture longer correlations in time. Despite these models have shown promising results in simple applications, only generative approaches have been used so far for parameter estimation. The goal of this work is to take a step forward in the development of dynamic pattern recognizers using wavelet features by introducing a new discriminative training method for this Markov models. The learning strategy relies on the minimum classification error approach and provides re-estimation formulas for fully non-tied models. Numerical experiments on phoneme recognition show important improvement over the recognition rate achieved by the same models trained using maximum likelihood estimation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Hidden Markov Models  
dc.subject
Hidden Markov Trees  
dc.subject
Discriminative Training  
dc.subject
Minimum Classification Error  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Minimum classification error learning for sequential data in the wavelet domain  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-04-26T15:36:46Z  
dc.journal.volume
43  
dc.journal.number
12  
dc.journal.pagination
3998-4010  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Pattern Recognition  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-50HP2NC-2&_user=10&_coverDate=12/31/2010&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=62bc0b99e36a373dc3e  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.patcog.2010.07.010