Artículo
Convergence of an adaptive Kačanov FEM for quasi-linear problems
Fecha de publicación:
04/2011
Editorial:
Elsevier Science
Revista:
Applied Numerical Mathematics
ISSN:
0168-9274
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We design an adaptive finite element method to approximate the solutions of quasi-linear elliptic problems. The algorithm is based on a Kačanov iteration and a mesh adaptation step is performed after each linear solve. The method is thus inexact because we do not solve the discrete nonlinear problems exactly, but rather perform one iteration of a fixed point method (Kačanov), using the approximation of the previous mesh as an initial guess. The convergence of the method is proved for any reasonable marking strategy and starting from any initial mesh. We conclude with some numerical experiments that illustrate the theory.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Convergence of an adaptive Kačanov FEM for quasi-linear problems; Elsevier Science; Applied Numerical Mathematics; 61; 4; 4-2011; 512-529
Compartir
Altmétricas