Artículo
Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property
Fecha de publicación:
01/2011
Editorial:
American Mathematical Society
Revista:
Mathematics Of Computation
ISSN:
0025-5718
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present an adaptive finite element method (AFEM) of any polynomial degree for the Laplace-Beltrami operator on C1 graphs Γ in R{double-struck}d (d ≥ 2). We first derive residual-type a posteriori error estimates that account for the interaction of both the energy error in H1(Γ) and the surface error in W∞1 (Γ) due to approximation of Γ. We devise a marking strategy to reduce the total error estimator, namely a suitably scaled sum of the energy, geometric, and inconsistency error estimators. We prove a conditional contraction property for the sum of the energy error and the total estimator; the conditional statement encodes resolution of Γ in W∞1. We conclude with one numerical experiment that illustrates the theory.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Mekchay, Khamron; Morin, Pedro; Nochetto, Ricardo Horacio; Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property; American Mathematical Society; Mathematics Of Computation; 80; 274; 1-2011; 625-648
Compartir
Altmétricas