Mostrar el registro sencillo del ítem
dc.contributor.author
Guennam, Ahmad Eduardo
dc.contributor.author
Luccioni, Bibiana Maria
dc.date.available
2019-04-26T21:05:12Z
dc.date.issued
2009-12
dc.identifier.citation
Guennam, Ahmad Eduardo; Luccioni, Bibiana Maria; Piezoelectric shell FE for the static and dynamic analysis of piezoelectric fibre composite laminates; IOP Publishing; Smart Materials & Structures; 18; 9; 12-2009; 1-20
dc.identifier.issn
0964-1726
dc.identifier.uri
http://hdl.handle.net/11336/75172
dc.description.abstract
A piezoelectric multilamina shell FE developed to model thin walled structures with piezoelectric fibre composites polarized with interdigitated electrodes (PFCPIE) is proposed in this paper. A new scheme for the interpolation of the electric field is presented. The electric field in each lamina lies parallel to the lamina plane and coincides with the poling direction. Each piezoelectric lamina admits an arbitrary poling direction. Based on Reissner-Mindlin assumptions and a multilaminate approach, the element employs a single layer assumption for the mechanical displacements and a layerwise constant electric potential. An MITC strategy is used to avoid shear locking. Two static examples are presented. The first is a cantilever piezoactuated beam and the second a single cell closed box beam with piezoelectric actuators. The results obtained for the cantilever beam with the present formulation are compared with those obtained with native ABAQUS plane stress elements and an analytical solution. For the closed box beam the numerical results were compared with experimental results from the literature. Very encouraging results are obtained in both cases. Finally, for the piezoactuated closed box beam, the FE model is used to obtain a state space model (SS). Based on the SS model, the design of the control system and the assessment of the system performance are carried out. Important systems characteristics are captured by the model, i.e.attenuation levels, frequency response and control voltage levels. This reveals that the proposed FE can be used to model and assess structural behaviour in a relatively simple and efficient way.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Shell
dc.subject
Finite Element
dc.subject
Piezoelectric
dc.subject
Composite Laminate
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Piezoelectric shell FE for the static and dynamic analysis of piezoelectric fibre composite laminates
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-04-11T19:52:29Z
dc.journal.volume
18
dc.journal.number
9
dc.journal.pagination
1-20
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Guennam, Ahmad Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Estructuras "Ing. Arturo M. Guzmán"; Argentina
dc.description.fil
Fil: Luccioni, Bibiana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Estructuras "Ing. Arturo M. Guzmán"; Argentina
dc.journal.title
Smart Materials & Structures
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1088/0964-1726/18/9/095044
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0964-1726/18/9/095044/meta
Archivos asociados