Mostrar el registro sencillo del ítem

dc.contributor.author
Guennam, Ahmad Eduardo  
dc.contributor.author
Luccioni, Bibiana Maria  
dc.date.available
2019-04-26T21:05:12Z  
dc.date.issued
2009-12  
dc.identifier.citation
Guennam, Ahmad Eduardo; Luccioni, Bibiana Maria; Piezoelectric shell FE for the static and dynamic analysis of piezoelectric fibre composite laminates; IOP Publishing; Smart Materials & Structures; 18; 9; 12-2009; 1-20  
dc.identifier.issn
0964-1726  
dc.identifier.uri
http://hdl.handle.net/11336/75172  
dc.description.abstract
A piezoelectric multilamina shell FE developed to model thin walled structures with piezoelectric fibre composites polarized with interdigitated electrodes (PFCPIE) is proposed in this paper. A new scheme for the interpolation of the electric field is presented. The electric field in each lamina lies parallel to the lamina plane and coincides with the poling direction. Each piezoelectric lamina admits an arbitrary poling direction. Based on Reissner-Mindlin assumptions and a multilaminate approach, the element employs a single layer assumption for the mechanical displacements and a layerwise constant electric potential. An MITC strategy is used to avoid shear locking. Two static examples are presented. The first is a cantilever piezoactuated beam and the second a single cell closed box beam with piezoelectric actuators. The results obtained for the cantilever beam with the present formulation are compared with those obtained with native ABAQUS plane stress elements and an analytical solution. For the closed box beam the numerical results were compared with experimental results from the literature. Very encouraging results are obtained in both cases. Finally, for the piezoactuated closed box beam, the FE model is used to obtain a state space model (SS). Based on the SS model, the design of the control system and the assessment of the system performance are carried out. Important systems characteristics are captured by the model, i.e.attenuation levels, frequency response and control voltage levels. This reveals that the proposed FE can be used to model and assess structural behaviour in a relatively simple and efficient way.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Shell  
dc.subject
Finite Element  
dc.subject
Piezoelectric  
dc.subject
Composite Laminate  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Piezoelectric shell FE for the static and dynamic analysis of piezoelectric fibre composite laminates  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-04-11T19:52:29Z  
dc.journal.volume
18  
dc.journal.number
9  
dc.journal.pagination
1-20  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Guennam, Ahmad Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Estructuras "Ing. Arturo M. Guzmán"; Argentina  
dc.description.fil
Fil: Luccioni, Bibiana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Estructuras "Ing. Arturo M. Guzmán"; Argentina  
dc.journal.title
Smart Materials & Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1088/0964-1726/18/9/095044  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0964-1726/18/9/095044/meta