Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A New Approach to Segmentation of Multispectral Remote Sensing Images Based on MRF

Baumgartner, Josef SylvesterIcon ; Gimenez Romero, Javier AlejandroIcon ; Scavuzzo, Marcelo; Pucheta, Julián AntonioIcon
Fecha de publicación: 06/2015
Editorial: Institute Of Electrical And Electronics Engineers
Revista: Ieee Geoscience And Remote Sensing Letters
ISSN: 1545-598X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

Segmentation of multispectral remote sensing images is a key competence for a great variety of applications. Many of the applied segmentation algorithms are generative models based on Markov random fields. These approaches are generally limited to multivariate probability densities like the normal distribution. Besides that, it is usually impossible to adjust the contextual parameters separately for each frequency band. In this work, we present a new segmentation algorithm that avoids the mentioned problems and allows the use of any univariate density function as emission probability in each band. The approach consists of three steps: First, calculate feature vectors for each frequency band. Second, estimate contextual parameters for each band and apply local smoothing. Third, merge the feature vectors of the frequency bands to obtain a final segmentation. This procedure can be iterated but experiments show, that after the first iteration most of the pixels are already in their final state. We call our approach Successive Band Merging (SBM). To evaluate the performance of SBM, we segment a Landsat 8 and an AVIRIS image. In both cases, the κ coefficients show, that SBM outperforms the benchmark algorithms.
Palabras clave: Image Segmentation , Markov Random Fields , Multispectral Imaging , Probability Density Function
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.956Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/7511
URL: http://ieeexplore.ieee.org/document/7098347/?arnumber=7098347
DOI: http://dx.doi.org/10.1109/LGRS.2015.2421736
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Citación
Baumgartner, Josef Sylvester; Gimenez Romero, Javier Alejandro; Scavuzzo, Marcelo; Pucheta, Julián Antonio; A New Approach to Segmentation of Multispectral Remote Sensing Images Based on MRF; Institute Of Electrical And Electronics Engineers; Ieee Geoscience And Remote Sensing Letters; 12; 8; 6-2015; 1720-1724
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES