Mostrar el registro sencillo del ítem

dc.contributor.author
Toosi, Amirhosein  
dc.contributor.author
Bottino, Andrea  
dc.contributor.author
Cumani, Sandro  
dc.contributor.author
Negri, Pablo Augusto  
dc.contributor.author
Sottile, Pietro Luca  
dc.date.available
2019-04-12T18:16:39Z  
dc.date.issued
2017-10  
dc.identifier.citation
Toosi, Amirhosein; Bottino, Andrea; Cumani, Sandro; Negri, Pablo Augusto; Sottile, Pietro Luca; Feature Fusion for Fingerprint Liveness Detection: A Comparative Study; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 5; 10-2017; 23695-23709  
dc.identifier.issn
2169-3536  
dc.identifier.uri
http://hdl.handle.net/11336/74263  
dc.description.abstract
Spoofing attacks carried out using artificial replicas are a severe threat for fingerprint-based biometric systems and, thus, require the development of effective countermeasures. One possible protection method is to implement software modules that analyze fingerprint images to tell live from fake samples. Most of the static software-based approaches in the literature are based on various image features, each with its own strengths, weaknesses, and discriminative power. Such features can be seen as different and often complementary views of the object in analysis, and their fusion is likely to improve the classification accuracy. This paper aims at assessing the potential of these feature fusion approaches in the area of fingerprint liveness detection by analyzing different features and different methods for their aggregation. Experiments on publicly available benchmarks show the effectiveness of feature fusion methods, which improve the accuracy of those based on individual features and are competitive with respect to the alternative methods, such as the ones based on convolutional neural networks.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers Inc.  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Biometric Counterspoofing Methods  
dc.subject
Feature Fusion  
dc.subject
Fingerprint Liveness Detection  
dc.subject
Local Image Features  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Feature Fusion for Fingerprint Liveness Detection: A Comparative Study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-04-12T16:54:36Z  
dc.journal.volume
5  
dc.journal.pagination
23695-23709  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Piscataway  
dc.description.fil
Fil: Toosi, Amirhosein. Politecnico di Torino; Italia  
dc.description.fil
Fil: Bottino, Andrea. Politecnico di Torino; Italia  
dc.description.fil
Fil: Cumani, Sandro. Politecnico di Torino; Italia  
dc.description.fil
Fil: Negri, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Sottile, Pietro Luca. Politecnico di Torino; Italia  
dc.journal.title
IEEE Access  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1109/ACCESS.2017.2763419  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8068202/