Mostrar el registro sencillo del ítem
dc.contributor.author
Toosi, Amirhosein
dc.contributor.author
Bottino, Andrea
dc.contributor.author
Cumani, Sandro
dc.contributor.author
Negri, Pablo Augusto
dc.contributor.author
Sottile, Pietro Luca
dc.date.available
2019-04-12T18:16:39Z
dc.date.issued
2017-10
dc.identifier.citation
Toosi, Amirhosein; Bottino, Andrea; Cumani, Sandro; Negri, Pablo Augusto; Sottile, Pietro Luca; Feature Fusion for Fingerprint Liveness Detection: A Comparative Study; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 5; 10-2017; 23695-23709
dc.identifier.issn
2169-3536
dc.identifier.uri
http://hdl.handle.net/11336/74263
dc.description.abstract
Spoofing attacks carried out using artificial replicas are a severe threat for fingerprint-based biometric systems and, thus, require the development of effective countermeasures. One possible protection method is to implement software modules that analyze fingerprint images to tell live from fake samples. Most of the static software-based approaches in the literature are based on various image features, each with its own strengths, weaknesses, and discriminative power. Such features can be seen as different and often complementary views of the object in analysis, and their fusion is likely to improve the classification accuracy. This paper aims at assessing the potential of these feature fusion approaches in the area of fingerprint liveness detection by analyzing different features and different methods for their aggregation. Experiments on publicly available benchmarks show the effectiveness of feature fusion methods, which improve the accuracy of those based on individual features and are competitive with respect to the alternative methods, such as the ones based on convolutional neural networks.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers Inc.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Biometric Counterspoofing Methods
dc.subject
Feature Fusion
dc.subject
Fingerprint Liveness Detection
dc.subject
Local Image Features
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Feature Fusion for Fingerprint Liveness Detection: A Comparative Study
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-04-12T16:54:36Z
dc.journal.volume
5
dc.journal.pagination
23695-23709
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Piscataway
dc.description.fil
Fil: Toosi, Amirhosein. Politecnico di Torino; Italia
dc.description.fil
Fil: Bottino, Andrea. Politecnico di Torino; Italia
dc.description.fil
Fil: Cumani, Sandro. Politecnico di Torino; Italia
dc.description.fil
Fil: Negri, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Sottile, Pietro Luca. Politecnico di Torino; Italia
dc.journal.title
IEEE Access
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1109/ACCESS.2017.2763419
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8068202/
Archivos asociados