Mostrar el registro sencillo del ítem

dc.contributor.author
Albornoz, Enrique Marcelo  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Rufiner, Hugo Leonardo  
dc.date.available
2019-04-11T22:22:20Z  
dc.date.issued
2011-07  
dc.identifier.citation
Albornoz, Enrique Marcelo; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Spoken emotion recognition using hierarchical classifiers; Elsevier; Computer Speech And Language; 25; 3; 7-2011; 556-570  
dc.identifier.issn
0885-2308  
dc.identifier.uri
http://hdl.handle.net/11336/74185  
dc.description.abstract
The recognition of the emotional state of speakers is a multi-disciplinary research area that has received great interest over the last years. One of the most important goals is to improve the voice-based human-machine interactions. Several works on this domain use the prosodic features or the spectrum characteristics of speech signal, with neural networks, Gaussian mixtures and other standard classifiers. Usually, there is no acoustic interpretation of types of errors in the results. In this paper, the spectral characteristics of emotional signals are used in order to group emotions based on acoustic rather than psychological considerations. Standard classifiers based on Gaussian Mixture Models, Hidden Markov Models and Multilayer Perceptron are tested. These classifiers have been evaluated with different configurations and input features, in order to design a new hierarchical method for emotion classification. The proposed multiple feature hierarchical method for seven emotions, based on spectral and prosodic information, improves the performance over the standard classifiers and the fixed features.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Emotion Recognition  
dc.subject
Hidden Markov Model  
dc.subject
Hierarchical Classifiers  
dc.subject
Multilayer Perceptron  
dc.subject
Spectral Information  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spoken emotion recognition using hierarchical classifiers  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-04-05T14:34:49Z  
dc.journal.volume
25  
dc.journal.number
3  
dc.journal.pagination
556-570  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina  
dc.journal.title
Computer Speech And Language  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0885230810000665  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.csl.2010.10.001