Mostrar el registro sencillo del ítem

dc.contributor.author
Singh, Priti  
dc.contributor.author
Das, Atanu Kumar  
dc.contributor.author
Sarkar, Biprajit  
dc.contributor.author
Niemeyer, Mark  
dc.contributor.author
Roncaroli, Federico  
dc.contributor.author
Olabe Iparraguirre, Jose Antonio  
dc.contributor.author
Fiedler, Jan  
dc.contributor.author
Zális, Stanislav  
dc.contributor.author
Kaim, Wolfgang  
dc.date.available
2019-04-11T13:50:09Z  
dc.date.issued
2008-08  
dc.identifier.citation
Singh, Priti; Das, Atanu Kumar; Sarkar, Biprajit; Niemeyer, Mark; Roncaroli, Federico; et al.; Redox properties of ruthenium nitrosyl porphyrin complexes with different axial ligation: Structural, spectroelectrochemical (IR, UV-Visible, and EPR), and theoretical studies; American Chemical Society; Inorganic Chemistry; 47; 16; 8-2008; 7106-7113  
dc.identifier.issn
0020-1669  
dc.identifier.uri
http://hdl.handle.net/11336/74019  
dc.description.abstract
Experimental and computational results for different ruthenium nitrosyl porphyrin complexes [(Por)Ru(NO)(X)]n+ (where Por2- = tetraphenylporphyrin dianion (TPP2-) or octaethylporphyrin dianion (OEP2-) and X = H2O (n = 1,2,3) or pyridine, 4-cyanopyridine, or 4-N,N-dimethylaminopyridine (n = 1,0)) are reported with respect to their electron-transfer behavior. The structure of [(TPP)Ru(NO)(H2O)]BF4 is established as an {MNO} 6 species with an almost-linear RuNO arrangement at 178.1(3)°. The compound [(Por)Ru(NO)(H2O)]BF4 undergoes two reversible one-electron oxidation processes. Spectroelectrochemical measurements (IR, UV-vis-NIR, and EPR) indicate that the first oxidation occurs on the porphyrin ring, as evident from the appearance of diagnostic porphyrin radical-anion vibrational bands (1530 cm-1 for OEP•- and 1290 cm-1 for TPP•-), from the small shift of ∼20 cm-1 for νNO and from the EPR signal at g iso ≈ 2.00. The second oxidation, which was found to be electrochemically reversible for the OEP compound, shows a 55 cm-1 shift in νNO, suggesting a partially metal-centered process. The compounds [(Por)Ru(NO)(X)]BF4, where X = pyridines, undergo a reversible one-electron reduction. The site of the reduction was determined by spectroelectrochemical studies to be NO-centered with a ca. -300 cm-1 shift in νNO. The EPR response of the NO• complexes was essentially unaffected by the variation in the substituted pyridines X. DFT calculations support the interpretation of the experimental results because the HOMO of [(TPP)Ru(NO)(X)]+, where X = H 2O or pyridines, was calculated to be centered at the porphyrin π system, whereas the LUMO of [(TPP)Ru(NO)(X)]+ has about 50% π*(NO) character. This confirms that the (first) oxidation of [(Por)Ru(NO)(H2O)]+ occurs on the porphyrin ring wheras the reduction of [(Por)Ru(NO)(X)]+ is largely NO-centered with the metal remaining in the low-spin ruthenium(II) state throughout. The 4% pyridine contribution to the LUMO of [(TPP)Ru(NO)(py)]+ is correlated with the stability of the reduced form as opposed to that of the aqua complex.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ruthenium  
dc.subject
Nitrosyl  
dc.subject
Porphyrins  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Redox properties of ruthenium nitrosyl porphyrin complexes with different axial ligation: Structural, spectroelectrochemical (IR, UV-Visible, and EPR), and theoretical studies  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-03-27T17:55:16Z  
dc.journal.volume
47  
dc.journal.number
16  
dc.journal.pagination
7106-7113  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Singh, Priti. Universität Stuttgart; Alemania  
dc.description.fil
Fil: Das, Atanu Kumar. Universität Stuttgart; Alemania  
dc.description.fil
Fil: Sarkar, Biprajit. Universität Stuttgart; Alemania  
dc.description.fil
Fil: Niemeyer, Mark. Universität Stuttgart; Alemania  
dc.description.fil
Fil: Roncaroli, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Olabe Iparraguirre, Jose Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Fiedler, Jan. Czech Academy of Sciences. J. Heyrovsky Institute of Physical Chemistry; República Checa  
dc.description.fil
Fil: Zális, Stanislav. Czech Academy of Sciences. J. Heyrovsky Institute of Physical Chemistry; República Checa  
dc.description.fil
Fil: Kaim, Wolfgang. Universität Stuttgart; Alemania  
dc.journal.title
Inorganic Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/ic702371t  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/ic702371t