Artículo
Trapping of Rhodamine 6G excitation energy on cellulose microparticles
Fecha de publicación:
03/2010
Editorial:
Royal Society of Chemistry
Revista:
Physical Chemistry Chemical Physics
ISSN:
1463-9076
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Rhodamine 6G (R6G) was adsorbed on cellulose microparticles and fluorescence quantum yields and decays were measured as a function of dye loading. Though no spectroscopic evidence of dye aggregation was found, a noticeable decrease of quantum yield - after correction for reabsorption and reemission of fluorescence - and shortening of decays were observed at the highest loadings. These effects were attributed to the dissipation of the excitation energy by traps constituted by R6G pairs, leading to static and dynamic quenching produced by direct absorption of traps and non-radiative energy transfer from monomers, respectively. Regarding the nature of traps, two extreme approaches were considered: (a) equilibrium between monomers slightly interacting in the ground state and (b) randomly distributed monomers located below a critical distance (statistical traps). Both approaches accounted quantitatively for the observed facts. The effect of energy migration was evaluated through computational simulations. As the concentration of traps could only be indirectly inferred, in some experiments an external energy transfer quencher, Methylene Blue, was coadsorbed and the results were compared with those obtained with pure R6G.
Palabras clave:
Rhodamine 6g
,
Cellulose Microparticles
,
Energy Transfer
,
Statistical Traps
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INQUIMAE)
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Citación
Lopez, Sergio Gabriel; Worringer, Gregor; Rodriguez, Hernan Bernardo; San Roman, Enrique Arnoldo; Trapping of Rhodamine 6G excitation energy on cellulose microparticles; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 12; 9; 3-2010; 2246-2253
Compartir
Altmétricas