Mostrar el registro sencillo del ítem

dc.contributor.author
Esquisabel, Oscar Miguel  
dc.contributor.author
Raffo Quintana, Federico  
dc.date.available
2019-04-10T15:54:00Z  
dc.date.issued
2017-12  
dc.identifier.citation
Esquisabel, Oscar Miguel; Raffo Quintana, Federico; Leibniz in Paris: A Discussion Concerning the Infinite Number of All Units; Universidade Católica- Faculdade de Filosofia; Revista Portuguesa de Filosofia; 73; 3-4; 12-2017; 1319-1342  
dc.identifier.issn
0870-5283  
dc.identifier.uri
http://hdl.handle.net/11336/73948  
dc.description.abstract
In this paper, we analyze the arguments that Leibniz develops against the concept of infinite number in his first Parisian text on the mathematics of the infinite, the Accessio ad arithmeticam infinitorum. With this goal, we approach this problem from two angles. The first, rather philosophical or axiomatic, argues against the number of all numbers appealing to a reductio ad absurdum, showing that the acceptance of the infinite number goes against the principle of the whole and the part, which is analytically demonstrated. So, discussing the ideas of Galileo, Leibniz concludes that the infinite number equals 0. Moreover, Leibniz seems to arrive at the same conclusion through his rule for adding the infinite series resulting from the harmonic triangle. Although he acknowledges the conjectural character of this conclusion, he seems to consider it to be a reinforcement of his first argument. Moreover, in reconstructing the justification of the given rule, we try to show that Leibniz does not appeal to the application of infinitesimal quantities, but rather to a treatment of the infinite series in terms of totalities.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Universidade Católica- Faculdade de Filosofia  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Infinite Number  
dc.subject
Infinite Series  
dc.subject
Infinitesimal Calculus  
dc.subject
Mathematical Conjecture  
dc.subject.classification
Estudios Religiosos  
dc.subject.classification
Filosofía, Ética y Religión  
dc.subject.classification
HUMANIDADES  
dc.title
Leibniz in Paris: A Discussion Concerning the Infinite Number of All Units  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-04-09T20:23:29Z  
dc.journal.volume
73  
dc.journal.number
3-4  
dc.journal.pagination
1319-1342  
dc.journal.pais
Portugal  
dc.description.fil
Fil: Esquisabel, Oscar Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencias Sociales. Instituto de Estudios Sociales de la Ciencia y la Tecnología; Argentina  
dc.description.fil
Fil: Raffo Quintana, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencias Sociales. Instituto de Estudios Sociales de la Ciencia y la Tecnología; Argentina  
dc.journal.title
Revista Portuguesa de Filosofia  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.publicacoesfacfil.pt/product.php?id_product=1047  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.17990/RPF/2017_73_3_1319