Mostrar el registro sencillo del ítem
dc.contributor.author
Esquisabel, Oscar Miguel
dc.contributor.author
Raffo Quintana, Federico
dc.date.available
2019-04-10T15:54:00Z
dc.date.issued
2017-12
dc.identifier.citation
Esquisabel, Oscar Miguel; Raffo Quintana, Federico; Leibniz in Paris: A Discussion Concerning the Infinite Number of All Units; Universidade Católica- Faculdade de Filosofia; Revista Portuguesa de Filosofia; 73; 3-4; 12-2017; 1319-1342
dc.identifier.issn
0870-5283
dc.identifier.uri
http://hdl.handle.net/11336/73948
dc.description.abstract
In this paper, we analyze the arguments that Leibniz develops against the concept of infinite number in his first Parisian text on the mathematics of the infinite, the Accessio ad arithmeticam infinitorum. With this goal, we approach this problem from two angles. The first, rather philosophical or axiomatic, argues against the number of all numbers appealing to a reductio ad absurdum, showing that the acceptance of the infinite number goes against the principle of the whole and the part, which is analytically demonstrated. So, discussing the ideas of Galileo, Leibniz concludes that the infinite number equals 0. Moreover, Leibniz seems to arrive at the same conclusion through his rule for adding the infinite series resulting from the harmonic triangle. Although he acknowledges the conjectural character of this conclusion, he seems to consider it to be a reinforcement of his first argument. Moreover, in reconstructing the justification of the given rule, we try to show that Leibniz does not appeal to the application of infinitesimal quantities, but rather to a treatment of the infinite series in terms of totalities.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Universidade Católica- Faculdade de Filosofia
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Infinite Number
dc.subject
Infinite Series
dc.subject
Infinitesimal Calculus
dc.subject
Mathematical Conjecture
dc.subject.classification
Estudios Religiosos
dc.subject.classification
Filosofía, Ética y Religión
dc.subject.classification
HUMANIDADES
dc.title
Leibniz in Paris: A Discussion Concerning the Infinite Number of All Units
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-04-09T20:23:29Z
dc.journal.volume
73
dc.journal.number
3-4
dc.journal.pagination
1319-1342
dc.journal.pais
Portugal
dc.description.fil
Fil: Esquisabel, Oscar Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencias Sociales. Instituto de Estudios Sociales de la Ciencia y la Tecnología; Argentina
dc.description.fil
Fil: Raffo Quintana, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencias Sociales. Instituto de Estudios Sociales de la Ciencia y la Tecnología; Argentina
dc.journal.title
Revista Portuguesa de Filosofia
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.publicacoesfacfil.pt/product.php?id_product=1047
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.17990/RPF/2017_73_3_1319
Archivos asociados