Mostrar el registro sencillo del ítem
dc.contributor.author
Lorenzetti, Carlos Martin

dc.contributor.author
Maguitman, Ana Gabriela

dc.date.available
2019-04-09T22:00:51Z
dc.date.issued
2009-05
dc.identifier.citation
Lorenzetti, Carlos Martin; Maguitman, Ana Gabriela; A semi-supervised incremental algorithm to automatically formulate topical queries; Elsevier Science Inc; Information Sciences; 179; 12; 5-2009; 1881-1892
dc.identifier.issn
0020-0255
dc.identifier.uri
http://hdl.handle.net/11336/73615
dc.description.abstract
The quality of the material collected by a context-based Web search systems is highly dependant on the vocabulary used to generate the search queries. This paper proposes to apply a semi-supervised algorithm to incrementally learn terms that can help bridge the terminology gap existing between the user's information needs and the relevant documents' vocabulary. The learning strategy uses an incrementally-retrieved, topic-dependent selection of Web documents for term-weight reinforcement reflecting the aptness of the terms in describing and discriminating the topic of the user context. The new algorithm learns new descriptors by searching for terms that tend to occur often in relevant documents, and learns good discriminators by identifying terms that tend to occur only in the context of the given topic. The enriched vocabulary allows the formulation of search queries that are more effective than those queries generated directly using terms from the initial topic description. An evaluation on a large collection of topics using a standard and two ad-hoc performance evaluation metrics suggests that the proposed technique is superior to a baseline and other existing query reformulation techniques.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Context
dc.subject
Query Formulation
dc.subject
Topical Queries
dc.subject
Web Search
dc.subject.classification
Ciencias de la Computación

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
A semi-supervised incremental algorithm to automatically formulate topical queries
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-03-27T13:55:55Z
dc.journal.volume
179
dc.journal.number
12
dc.journal.pagination
1881-1892
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Lorenzetti, Carlos Martin. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
dc.description.fil
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina
dc.journal.title
Information Sciences

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ins.2009.01.029
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020025509000565
Archivos asociados