Artículo
Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type
Fecha de publicación:
10/2006
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let 0 < γ < 1, b be a BMO function and Iγ, b m the commutator of order m for the fractional integral. We prove two type of weighted Lp inequalities for Iγ, b m in the context of the spaces of homogeneous type. The first one establishes that, for A∞ weights, the operator Iγ, b m is bounded in the weighted Lp norm by the maximal operator Mγ (Mm), where Mγ is the fractional maximal operator and Mm is the Hardy-Littlewood maximal operator iterated m times. The second inequality is a consequence of the first one and shows that the operator Iγ, b m is bounded from Lp [Mγ p (M[(m + 1) p] w) (x) d μ (x)] to Lp [w (x) d μ (x)], where [(m + 1) p] is the integer part of (m + 1) p and no condition on the weight w is required. From the first inequality we also obtain weighted Lp-Lq estimates for Iγ, b m generalizing the classical results of Muckenhoupt and Wheeden for the fractional integral operator.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Bernardis, Ana Lucia; Hartzstein, Silvia Inés; Pradolini, Gladis Guadalupe; Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 322; 2; 10-2006; 825-846
Compartir
Altmétricas