Artículo
Nonparametric statistics of dynamic networks with distinguishable nodes
Fecha de publicación:
09/2017
Editorial:
Springer
Revista:
Test
ISSN:
1133-0686
e-ISSN:
1863-8260
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The study of random graphs and networks had an explosive development in the last couple of decades. Meanwhile, techniques for the statistical analysis of sequences of networks were less developed. In this paper, we focus on networks sequences with a fixed number of labeled nodes and study some statistical problems in a nonparametric framework. We introduce natural notions of center and a depth function for networks that evolve in time. We develop several statistical techniques including testing, supervised and unsupervised classification, and some notions of principal component sets in the space of networks. Some examples and asymptotic results are given, as well as two real data examples.
Palabras clave:
Cluster Analysis of Graphs
,
Depth
,
Graph Estimation
,
Principal Components
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Fraiman Borrazás, Daniel Edmundo; Fraiman, Nicolas; Fraiman, Ricardo; Nonparametric statistics of dynamic networks with distinguishable nodes; Springer; Test; 26; 3; 9-2017; 546-573
Compartir
Altmétricas