Mostrar el registro sencillo del ítem

dc.contributor.author
Morales, Juan Francisco  
dc.contributor.author
Scioli Montoto, Sebastián  
dc.contributor.author
Fagiolino, Pietro  
dc.contributor.author
Ruiz, María Esperanza  
dc.date.available
2019-03-28T19:05:00Z  
dc.date.issued
2017-02  
dc.identifier.citation
Morales, Juan Francisco; Scioli Montoto, Sebastián; Fagiolino, Pietro; Ruiz, María Esperanza; Current state and future perspectives in QSAR models to predict blood-brain barrier penetration in central nervous system drug R&D; Bentham Science Publishers; Mini-reviews In Medicinal Chemistry; 17; 3; 2-2017; 247-257  
dc.identifier.issn
1389-5575  
dc.identifier.uri
http://hdl.handle.net/11336/72761  
dc.description.abstract
The Blood-Brain Barrier (BBB) is a physical and biochemical barrier that restricts the entry of certain drugs to the Central Nervous System (CNS), while allowing the passage of others. The ability to predict the permeability of a given molecule through the BBB is a key aspect in CNS drug discovery and development, since neurotherapeutic agents with molecular targets in the CNS should be able to cross the BBB, whereas peripherally acting agents should not, to minimize the risk of CNS adverse effects. In this review we examine and discuss QSAR approaches and current availability of experimental data for the construction of BBB permeability predictive models, focusing on the modeling of the biorelevant parameter unbound partitioning coefficient (Kp,uu). Emphasis is made on two possible strategies to overcome the current limitations of in silico models: considering the prediction of brain penetration as a multifactorial problem, and increasing experimental datasets through accurate and standardized experimental techniques.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Bentham Science Publishers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Blood-Brain Barrier  
dc.subject
Brain Penetration  
dc.subject
Central Nervous System  
dc.subject
In Silico Models  
dc.subject
Microdialysis  
dc.subject
Passive Difussion  
dc.subject
Pharmacokinetic  
dc.subject
Protein Binding  
dc.subject
Qsar Models  
dc.subject
Unbound Drug Fraction  
dc.subject.classification
Medicina Química  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Current state and future perspectives in QSAR models to predict blood-brain barrier penetration in central nervous system drug R&D  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-03-15T18:24:03Z  
dc.journal.volume
17  
dc.journal.number
3  
dc.journal.pagination
247-257  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Oak Park  
dc.description.fil
Fil: Morales, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina  
dc.description.fil
Fil: Scioli Montoto, Sebastián. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina  
dc.description.fil
Fil: Fagiolino, Pietro. Universidad de la República; Uruguay  
dc.description.fil
Fil: Ruiz, María Esperanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina  
dc.journal.title
Mini-reviews In Medicinal Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2174/1389557516666161013110813  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/146235/article