Mostrar el registro sencillo del ítem

dc.contributor.author
Aguate, Fernando Matías  
dc.contributor.author
Trachsel, Samuel  
dc.contributor.author
González Pérez, Lorena  
dc.contributor.author
Burgueño, Juan  
dc.contributor.author
Crossa, José  
dc.contributor.author
Balzarini, Monica Graciela  
dc.contributor.author
Gouache, David  
dc.contributor.author
Bogard, Matthieu  
dc.contributor.author
de los Campos, Gustavo  
dc.date.available
2019-03-26T14:56:48Z  
dc.date.issued
2017-09  
dc.identifier.citation
Aguate, Fernando Matías; Trachsel, Samuel; González Pérez, Lorena; Burgueño, Juan; Crossa, José; et al.; Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield; Crop Science Society of America; Crop Science; 57; 5; 9-2017; 2517-2524  
dc.identifier.issn
0011-183X  
dc.identifier.uri
http://hdl.handle.net/11336/72524  
dc.description.abstract
Hyperspectral cameras can provide reflectance data at hundreds of wavelengths. This information can be used to derive vegetation indices (VIs) that are correlated with agronomic and physiological traits. However, the data generated by hyperspectral cameras are richer than what can be summarized in a VI. Therefore, in this study, we examined whether prediction equations using hyperspectral image data can lead to better predictive performance for grain yield than what can be achieved using VIs. For hyperspectral prediction equations, we considered three estimation methods: ordinary least squares, partial least squares (a dimension reduction method), and a Bayesian shrinkage and variable selection procedure. We also examined the benefits of combining reflectance data collected at different time points. Data were generated by CIMMYT in 11 maize (Zea mays L.) yield trials conducted in 2014 under heat and drought stress. Our results indicate that using data from 62 bands leads to higher prediction accuracy than what can be achieved using individual VIs. Overall, the shrinkage and variable selection method was the best-performing one. Among the models using data from a single time point, the one using reflectance collected at 28 d after flowering gave the highest prediction accuracy. Combining image data collected at multiple time points led to an increase in prediction accuracy compared with using single-time-point data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Crop Science Society of America  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Pls  
dc.subject
Ndvi  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-03-18T19:29:39Z  
dc.journal.volume
57  
dc.journal.number
5  
dc.journal.pagination
2517-2524  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Baltimore  
dc.description.fil
Fil: Aguate, Fernando Matías. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina  
dc.description.fil
Fil: Trachsel, Samuel. Centro Internacional de Mejoramiento de Maiz y Trigo; México  
dc.description.fil
Fil: González Pérez, Lorena. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Sustainable Intensification Program; México  
dc.description.fil
Fil: Burgueño, Juan. Centro Internacional de Mejoramiento de Maiz y Trigo; México  
dc.description.fil
Fil: Crossa, José. Centro Internacional de Mejoramiento de Maiz y Trigo; México  
dc.description.fil
Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina  
dc.description.fil
Fil: Gouache, David. Arvalis - Institut Du Vegetal; Francia  
dc.description.fil
Fil: Bogard, Matthieu. Arvalis - Institut Du Vegetal; Francia  
dc.description.fil
Fil: de los Campos, Gustavo. Michigan State University; Estados Unidos  
dc.journal.title
Crop Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.sciencesocieties.org/publications/cs/abstracts/0/0/cropsci2017.01.0007  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2135/cropsci2017.01.0007