Artículo
Convolution of Lorentz Invariant Ultradistributions and Field Theory
Fecha de publicación:
04/2004
Editorial:
Springer/Plenum Publishers
Revista:
International Journal of Theoretical Physics
ISSN:
0020-7748
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A general definition of convolution between two arbitrary four-dimensional Lorentz invariant (fdLi) tempered ultradistributions is given, in both Minkowski and Euclidean space (spherically symmetric tempered Ultradistributions). The product of two arbitrary fdLi distributions of exponential type is defined via the convolution of its corresponding Fourier transforms. Several examples of convolution of two fdLi tempered ultadisrtibutions are given. In particular, we calculate exactly the convolution of two Feynman's massless prapagators. An expression for the Fourier transform of a Lorentz invariant tempered ultradistribution in terms of modified Bessel distributions is obtained in this work (generalization of Bochner's formula to Minkowski space). From the deduction of the convoltion formula, we obtain the generalization to the Minkowski space, of the dimensional regularization of the perturbation theory of Green functions in the Euclidean configuration space given in Erdelyi (Higher Transcendental Functions, 1953). As an example we evaluate the convolution of two n-dimensional complex-mass Wheeler propagators.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Bollini, C. G.; Rocca, Mario Carlos; Convolution of Lorentz Invariant Ultradistributions and Field Theory; Springer/Plenum Publishers; International Journal of Theoretical Physics; 43; 4; 4-2004; 1019-1051
Compartir
Altmétricas