Artículo
A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions
Fecha de publicación:
11/2017
Editorial:
American Institute of Mathematical Sciences
Revista:
Discrete And Continuous Dynamical Systems
ISSN:
1078-0947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we obtain a Liouville theorem for positive, bounded solutions of the equation where (-δ)s stands for the fractional Laplacian with s 2 (0; 1), and the functions h and f are nondecreasing. The main feature is that the function h changes sign in R, therefore the problem is sometimes termed as indefinite. As an application we obtain a priori bounds for positive solutions of some boundary value problems, which give existence of such solutions by means of bifurcation methods.
Palabras clave:
A Priori Bounds
,
Fractional Laplacian
,
Liouville Theorem
,
Positive Solution
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Barrios, Begona; del Pezzo, Leandro Martin; Garcia Melian, Jorge; Quaas, Alexander; A liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 37; 11; 11-2017; 5731-5746
Compartir
Altmétricas