Mostrar el registro sencillo del ítem

dc.contributor.author
Villagra, Mariana  
dc.contributor.author
Campanello, Paula Inés  
dc.contributor.author
Montti, Lia Fernanda  
dc.contributor.author
Goldstein, Guillermo Hernan  
dc.date.available
2016-08-17T20:10:27Z  
dc.date.issued
2013-02  
dc.identifier.citation
Villagra, Mariana; Campanello, Paula Inés; Montti, Lia Fernanda; Goldstein, Guillermo Hernan; Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance; Oxford University Press; Tree Physiology; 33; 3; 2-2013; 285-296  
dc.identifier.issn
0829-318X  
dc.identifier.uri
http://hdl.handle.net/11336/7210  
dc.description.abstract
A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was −1.1 MPa, while the P50 of fertilized plants was −1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light- requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments were maintained regardless of soil nutrient status.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Herbivory  
dc.subject
Hydraulic Conductivity  
dc.subject
La:Sa  
dc.subject
Nutrient Addition  
dc.subject
Semideciduous Atlantic Forest  
dc.subject
Xylem Vulnerability to Cavitation  
dc.subject
Trade-Off  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-08-11T19:39:16Z  
dc.journal.volume
33  
dc.journal.number
3  
dc.journal.pagination
285-296  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Villagra, Mariana. Universidad Nacional de Misiones. Facultad de Ciencias Forestales. Instituto de Biologia Subtropical - Sede Puerto Iguazu; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina  
dc.description.fil
Fil: Campanello, Paula Inés. Universidad Nacional de Misiones. Facultad de Ciencias Forestales. Instituto de Biologia Subtropical - Sede Puerto Iguazu; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina  
dc.description.fil
Fil: Montti, Lia Fernanda. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Forestales. Instituto de Biologia Subtropical - Sede Puerto Iguazu; Argentina  
dc.description.fil
Fil: Goldstein, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University Of Miami; Estados Unidos  
dc.journal.title
Tree Physiology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://treephys.oxfordjournals.org/content/33/3/285.long  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1093/treephys/tpt003  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/treephys/tpt003