Artículo
On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics
Fecha de publicación:
02/2000
Editorial:
World Scientific
Revista:
Mathematical Models And Methods In Applied Sciences
ISSN:
0218-2025
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We analyze the solution of the time-harmonic Maxwell equations with vanishing electric permittivity in bounded domains and subject to absorbing boundary conditions. The problem arises naturally in magnetotellurics when considering the propagation of electromagnetic waves within the earth's interior. Existence and uniqueness are shown under the assumption that the source functions are square integrable. In this case, the electric and magnetic fields belong to H(curl; Ω). If, in addition, the divergences of the source functions are square integrable and the coefficients are Lipschitz-continuous, a stronger regularity result is obtained. A decomposition of the space of square integrable vector functions and a new compact imbedding result are exploited.
Palabras clave:
Solution
,
Uniqueness
,
Equation
,
Magneoteluric
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Douglas, Jim; Santos, Juan Enrique; Sheen, Dongwoo; On the existence and uniqueness of solutions to Maxwell's equations in bounded domains with application to magnetotellurics; World Scientific; Mathematical Models And Methods In Applied Sciences; 10; 4; 2-2000; 615-628
Compartir
Altmétricas