Artículo
High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates
Fecha de publicación:
12/2016
Editorial:
Springer
Revista:
Foundations Of Computational Mathematics
ISSN:
1615-3375
e-ISSN:
1615-3383
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present a new AFEM for the Laplace–Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally W∞1 and piecewise in a suitable Besov class embedded in C1 , α with α∈ (0 , 1 ]. The idea is to have the surface sufficiently well resolved in W∞1 relative to the current resolution of the PDE in H1. This gives rise to a conditional contraction property of the PDE module. We present a suitable approximation class and discuss its relation to Besov regularity of the surface, solution, and forcing. We prove optimal convergence rates for AFEM which are dictated by the worst decay rate of the surface error in W∞1 and PDE error in H1.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Bonito, Andrea; Cascón, José Manuel; Mekchay, Khamron; Morin, Pedro; Nochetto, Ricardo Horacio; High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates; Springer; Foundations Of Computational Mathematics; 16; 6; 12-2016; 1473-1539
Compartir
Altmétricas