Mostrar el registro sencillo del ítem

dc.contributor.author
Gil Costa, Graciela Verónica  
dc.contributor.author
Santos, Rodrygo L. T.  
dc.contributor.author
Macdonald, Craig  
dc.contributor.author
Ounis, Iadh  
dc.date.available
2016-08-10T21:50:40Z  
dc.date.issued
2013-01  
dc.identifier.citation
Gil Costa, Graciela Verónica; Santos, Rodrygo L. T.; Macdonald, Craig; Ounis, Iadh; Modelling Efficient Novelty-based Search Result Diversification in Metric Spaces; Elsevier; Journal of Discrete Algorithms; 18; 1-2013; 75-88  
dc.identifier.issn
1570-8667  
dc.identifier.uri
http://hdl.handle.net/11336/7075  
dc.description.abstract
Novelty-based diversification provides a way to tackle ambiguous queries by re-ranking a set of retrieved documents. Current approaches are typically greedy, requiring O(n2) document–document comparisons in order to diversify a ranking of n documents. In this article, we introduce a new approach for novelty-based search result diversification to reduce the overhead incurred by document–document comparisons. To this end, we model novelty promotion as a similarity search in a metric space, exploiting the properties of this space to efficiently identify novel documents. We investigate three different approaches: pivoting-based, clustering-based, and permutation-based. In the first two, a novel document is one that lies outside the range of a pivot or outside a cluster. In the latter, a novel document is one that has a different signature (i.e., the documentʼs relative distance to a distinguished set of fixed objects called permutants) compared to previously selected documents. Thorough experiments using two TREC test collections for diversity evaluation, as well as a large sample of the query stream of a commercial search engine show that our approaches perform at least as effectively as well-known novelty-based diversification approaches in the literature, while dramatically improving their efficiency.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Similarity Search  
dc.subject
Diverification  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Modelling Efficient Novelty-based Search Result Diversification in Metric Spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-08-04T17:22:53Z  
dc.journal.volume
18  
dc.journal.pagination
75-88  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Gil Costa, Graciela Verónica. Yahoo; México. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; Argentina  
dc.description.fil
Fil: Santos, Rodrygo L. T.. University Of Glasgow; Reino Unido  
dc.description.fil
Fil: Macdonald, Craig. University Of Glasgow; Reino Unido  
dc.description.fil
Fil: Ounis, Iadh. University Of Glasgow; Reino Unido  
dc.journal.title
Journal of Discrete Algorithms  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1570866712001074  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jda.2012.07.004  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jda.2012.07.004