Mostrar el registro sencillo del ítem

dc.contributor.author
Barbosa, Nicolás D.  
dc.contributor.author
Rubino, Jorge German  
dc.contributor.author
Caspari, Eva  
dc.contributor.author
Holliger, Klaus  
dc.date.available
2019-02-21T19:06:24Z  
dc.date.issued
2017-10-09  
dc.identifier.citation
Barbosa, Nicolás D.; Rubino, Jorge German; Caspari, Eva; Holliger, Klaus; Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study; Blackwell Publishing; Journal of Geophysical Research: Solid Earth; 122; 10; 9-10-2017; 8181-8199  
dc.identifier.issn
2169-9313  
dc.identifier.uri
http://hdl.handle.net/11336/70642  
dc.description.abstract
Many researchers have analyzed seismic attenuation and velocity dispersion due to wave-induced fluid flow (WIFF) related to the presence of fluid-saturated fractures embedded in an isotropic porous background. Most fractured formations do, however, exhibit some degree of intrinsic elastic and hydraulic anisotropy of the background, and the impact of which on the effective seismic properties remains largely unexplored. In this work, we extend a numerical upscaling procedure to account for the potential intrinsic elastic and hydraulic anisotropy of the background. To do this, we represent the background of a representative sample of the fractured formation of interest with an anisotropic poroelastic medium and apply a set of relaxation experiments to compute the effective anisotropic seismic properties. A comprehensive numerical analysis allows us to observe that, for samples containing hydraulically connected fractures, the anisotropic behavior of both P and S waves differs significantly from that observed for an isotropic background. The anisotropy of the stiffness of the background plays a fundamental role for WIFF between the fractures and the background as well as for WIFF between connected fractures. Conversely, the anisotropy of the background permeability affects the characteristic frequency, the angle dependence, and the magnitude of the effects related to WIFF between fractures and background. In addition, different correlations between hydraulic and elastic background anisotropy lead to different degrees of effective seismic anisotropy. Our results therefore indicate that accounting for the effects of intrinsic background anisotropy on WIFF is crucial for a quantitative interpretation of seismic anisotropy measurements in fluid-saturated fractured formations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Blackwell Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Intrinsic Anisotropy  
dc.subject
Modeling  
dc.subject
Numerical Analysis  
dc.subject
Poroelasticity  
dc.subject
Seismic Anisotropy  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sensitivity of Seismic Attenuation and Phase Velocity to Intrinsic Background Anisotropy in Fractured Porous Rocks: A Numerical Study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-02-12T14:32:35Z  
dc.identifier.eissn
2169-9356  
dc.journal.volume
122  
dc.journal.number
10  
dc.journal.pagination
8181-8199  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Barbosa, Nicolás D.. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.description.fil
Fil: Caspari, Eva. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Holliger, Klaus. Universite de Lausanne; Suiza  
dc.journal.title
Journal of Geophysical Research: Solid Earth  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/2017JB014558  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JB014558