Mostrar el registro sencillo del ítem

dc.contributor.author
Schweickardt, Gustavo Alejandro  
dc.contributor.author
Casanova Pietroboni, Carlos Antonio  
dc.contributor.author
Pérez, Eduardo  
dc.date.available
2019-02-20T18:53:19Z  
dc.date.issued
2015-11  
dc.identifier.citation
Schweickardt, Gustavo Alejandro; Casanova Pietroboni, Carlos Antonio; Pérez, Eduardo; Modelo de simulación soft-computing para la selección de contingencias críticas en la seguridad dinámica de sistemas de potencia soportado en redes neuronales de retropropagación simple y múltiple ; Escuela de Perfeccionamiento en Investigación Operativa; Revista de la Escuela de Perfeccionamiento en Investigación Operativa; 23; 38; 11-2015; 26-46  
dc.identifier.issn
0329-7322  
dc.identifier.uri
http://hdl.handle.net/11336/70550  
dc.description.abstract
Un importante número de Contingencias simuladas en la Evaluación de la Seguridad Dinámica de un Sistema de Potencia (ESDSP), no afectan de manera significativa las variables de estado. Su exclusión del conjunto que requiere analizarse, permitiría una importante reducción en los tiempos de computación, posibilitando la Evaluación En Línea (Tiempo Real) adoptando acciones correctivas sólo sobre las Contingencias consideradas Críticas. El Método clásico de Selección de Contingencias Críticas resulta de un Análisis Fuera de Línea, que cubre escenarios típicos considerando aspectos tales como: frecuencia del sistema, tensiones de barra y ángulos internos de los generadores. Sobre tal selección, el operador experto implementa las acciones correctivas pertinentes. En este trabajo es propuesto un nuevo Modelo Soft-Computing, que identifica Contingencias Críticas en Línea para la ESDSP, soportado en Redes Neuronales de Retropropagación Simple y Múltiple (RNRS/RNRM), Conjuntos Difusos y MatHeurísticas. Las RNRM presentan la capacidad de fraccionar el espacio de entrada, utilizando neuronas selectivas. Se disminuye el tiempo de entrenamiento y se logra aproximar mejor características no lineales en regiones localizadas, así como la interpolación dentro del rango de entrenamiento. Los resultados obtenidos son presentados y discutidos, para lo cual es utilizada una red reducida del Sistema de Interconexión Argentino (SADI).  
dc.description.abstract
An important number of contingencies simulated during Dynamic Security Assessment of a Power System (DSAPS), do not result in unacceptable values of state variables, due to their small influence on system operation. Their exclusion from the Set of Contingencies to be analyzed, would achieve a significant reduction in computation time. The standard Selection Method results from an Off-Line Dynamical Analysis, which covers typical scenarios and various related aspects like frequency, voltage, and internal angles of generators. In this work, a new Soft Computing-based Critical Contingencies Selection Method for On-Line Dynamic Security Assessment, supported in Simple and Multi-Backpropagation Neural Networks (SBNN/MBNN), Fuzzy Sets and MatHeuristics, is presented. The MBNN have the capability of split the input space, using selective neurons, achieving a better adjust in the no linear characteristics over localized regions, improving the computation time and interpolation into the training range. The results of a simulation Model on the reduced network of Interconnected Power System of Argentina (IPS), are presented.  
dc.format
application/pdf  
dc.language.iso
spa  
dc.publisher
Escuela de Perfeccionamiento en Investigación Operativa  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Simulación  
dc.subject
Soft Computing  
dc.subject
Seguridad Dinámica  
dc.subject
Sistemas de Potencia  
dc.subject
Redes Neuronales  
dc.subject
Retropropagación Múltiple  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Economía, Econometría  
dc.subject.classification
Economía y Negocios  
dc.subject.classification
CIENCIAS SOCIALES  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Modelo de simulación soft-computing para la selección de contingencias críticas en la seguridad dinámica de sistemas de potencia soportado en redes neuronales de retropropagación simple y múltiple  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-02-15T14:36:42Z  
dc.journal.volume
23  
dc.journal.number
38  
dc.journal.pagination
26-46  
dc.journal.pais
Argentina  
dc.journal.ciudad
Tandil  
dc.description.fil
Fil: Schweickardt, Gustavo Alejandro. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay. Secretaria de Ciencia y Técnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Casanova Pietroboni, Carlos Antonio. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pérez, Eduardo. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay; Argentina. Universidad de Buenos Aires; Argentina  
dc.journal.title
Revista de la Escuela de Perfeccionamiento en Investigación Operativa  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://revistas.unc.edu.ar/index.php/epio/article/view/14311