Mostrar el registro sencillo del ítem

dc.contributor.author
Palombarini, Jorge Andrés  
dc.contributor.author
Martínez, Ernesto Carlos  
dc.date.available
2019-02-15T17:53:39Z  
dc.date.issued
2012-09  
dc.identifier.citation
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning; Elsevier Science Ltd; Expert Systems with Applications; 39; 11; 9-2012; 10251-10268  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/70284  
dc.description.abstract
With the current trend towards cognitive manufacturing systems to deal with unforeseen events and disturbances that constantly demand real-time repair decisions, learning/reasoning skills and interactive capabilities are important functionalities for rescheduling a shop-floor on the fly taking into account several objectives and goal states. In this work, the automatic generation and update through learning of rescheduling knowledge using simulated transitions of abstract schedule states is proposed. Deictic representations of schedules based on focal points are used to define a repair policy which generates a goal-directed sequence of repair operators to face unplanned events and operational disturbances. An industrial example where rescheduling is needed due to the arrival of a new/rush order, or whenever raw material delay/shortage or machine breakdown events occur are discussed using the SmartGantt prototype for interactive rescheduling in real-time. SmartGantt demonstrates that due date compliance of orders-in-progress, negotiating delivery conditions of new orders and ensuring distributed production control can be dramatically improved by means of relational reinforcement learning and a deictic representation of rescheduling tasks.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Automated Planning  
dc.subject
Information Systems  
dc.subject
Manufacturing Systems  
dc.subject
Real-Time Rescheduling  
dc.subject
Reinforcement Learning  
dc.subject
Relational Abstractions  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-02-12T17:42:40Z  
dc.journal.volume
39  
dc.journal.number
11  
dc.journal.pagination
10251-10268  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Expert Systems with Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2012.02.176