Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Learning to repair plans and schedules using a relational (deictic) representation

Palombarini, Jorge AndrésIcon ; Martínez, Ernesto CarlosIcon
Fecha de publicación: 09/2010
Editorial: Brazilian Society of Chemical Engineering
Revista: Brazilian Journal of Chemical Engineering
ISSN: 0104-6632
e-ISSN: 1678-4383
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química

Resumen

Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling.
Palabras clave: Batch Plants , Rescheduling , Reinforcement Learning , Automated Planning , Artificial Intelligence , Relational Modeling , Rescheduling
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.145Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/70283
DOI: http://dx.doi.org/10.1590/S0104-66322010000300006
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Learning to repair plans and schedules using a relational (deictic) representation; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 27; 3; 9-2010; 413-427
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES