Mostrar el registro sencillo del ítem
dc.contributor.author
Palombarini, Jorge Andrés
dc.contributor.author
Martínez, Ernesto Carlos
dc.date.available
2019-02-15T16:48:07Z
dc.date.issued
2012-12
dc.identifier.citation
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Task Rescheduling using Relational Reinforcement Learning; IBERAMIA; Inteligencia Artificial; 50; 12-2012; 57-68
dc.identifier.issn
1137-3601
dc.identifier.uri
http://hdl.handle.net/11336/70276
dc.description.abstract
Generating and representing knowledge about heuristics for repair-based scheduling is a key issue in any rescheduling strategy to deal with unforeseen events and disturbances. Resorting to a feature-based propositional representation of schedule states is very inefficient and generalization to unseen states is highly unreliable whereas knowledge transfer to similar scheduling domains is difficult. In contrast, first-order relational representations enable the exploitation of the existence of domain objects and relations over these objects, and enable the use of quantification over objectives (goals), action effects and properties of states. In this work, a novel approach which formalizes the re-scheduling problem as a Relational Markov Decision Process integrating first-order (deictic)representations of (abstract) schedule states is presented. Task rescheduling is solved using a relational reinforcement learning algorithm implemented in a real-time prototype system which makes room for an interactive scheduling strategy that successfully handle different repair goals and disruption scenarios. An industrial case study vividly shows how relational abstractions provide compact repair policies with minor computational efforts.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IBERAMIA
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Rescheduling
dc.subject
Relational Reinforcement Learning
dc.subject
Manufacturing Control
dc.subject
Relational Abstractions
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Task Rescheduling using Relational Reinforcement Learning
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-02-12T17:24:34Z
dc.identifier.eissn
1988-3064
dc.journal.volume
50
dc.journal.pagination
57-68
dc.journal.pais
España
dc.journal.ciudad
Madrid
dc.description.fil
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Inteligencia Artificial
Archivos asociados