Mostrar el registro sencillo del ítem

dc.contributor.author
Palombarini, Jorge Andrés  
dc.contributor.author
Martínez, Ernesto Carlos  
dc.date.available
2019-02-15T16:48:07Z  
dc.date.issued
2012-12  
dc.identifier.citation
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Task Rescheduling using Relational Reinforcement Learning; IBERAMIA; Inteligencia Artificial; 50; 12-2012; 57-68  
dc.identifier.issn
1137-3601  
dc.identifier.uri
http://hdl.handle.net/11336/70276  
dc.description.abstract
Generating and representing knowledge about heuristics for repair-based scheduling is a key issue in any rescheduling strategy to deal with unforeseen events and disturbances. Resorting to a feature-based propositional representation of schedule states is very inefficient and generalization to unseen states is highly unreliable whereas knowledge transfer to similar scheduling domains is difficult. In contrast, first-order relational representations enable the exploitation of the existence of domain objects and relations over these objects, and enable the use of quantification over objectives (goals), action effects and properties of states. In this work, a novel approach which formalizes the re-scheduling problem as a Relational Markov Decision Process integrating first-order (deictic)representations of (abstract) schedule states is presented. Task rescheduling is solved using a relational reinforcement learning algorithm implemented in a real-time prototype system which makes room for an interactive scheduling strategy that successfully handle different repair goals and disruption scenarios. An industrial case study vividly shows how relational abstractions provide compact repair policies with minor computational efforts.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IBERAMIA  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Rescheduling  
dc.subject
Relational Reinforcement Learning  
dc.subject
Manufacturing Control  
dc.subject
Relational Abstractions  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Task Rescheduling using Relational Reinforcement Learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-02-12T17:24:34Z  
dc.identifier.eissn
1988-3064  
dc.journal.volume
50  
dc.journal.pagination
57-68  
dc.journal.pais
España  
dc.journal.ciudad
Madrid  
dc.description.fil
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Inteligencia Artificial