Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Model-free control based on reinforcement learning for a wastewater treatment problem

Syafiie, S.; Tadeo, F.; Martínez, Ernesto CarlosIcon ; Alvarez, T.
Fecha de publicación: 01/2011
Editorial: Elsevier Science
Revista: Applied Soft Computing
ISSN: 1568-4946
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

This article presents a proposal, based on the model-free learning control (MFLC) approach, for the control of the advanced oxidation process in wastewater plants. This is prompted by the fact that many organic pollutants in industrial wastewaters are resistant to conventional biological treatments, and the fact that advanced oxidation processes, controlled with learning controllers measuring the oxidation-reduction potential (ORP), give a cost-effective solution. The proposed automation strategy denoted MFLC-MSA is based on the integration of reinforcement learning with multiple step actions. This enables the most adequate control strategy to be learned directly from the process response to selected control inputs. Thus, the proposed methodology is satisfactory for oxidation processes of wastewater treatment plants, where the development of an adequate model for control design is usually too costly. The algorithm proposed has been tested in a lab pilot plant, where phenolic wastewater is oxidized to carboxylic acids and carbon dioxide. The obtained experimental results show that the proposed MFLC-MSA strategy can achieve good performance to guarantee on-specification discharge at maximum degradation rate using readily available measurements such as pH and ORP, inferential measurements of oxidation kinetics and peroxide consumption, respectively.
Palabras clave: Wastewater Treatment , Reinforcement Learning , Intelligent Control , Fenton Process
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1000.Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/70209
DOI: http://dx.doi.org/10.1016/j.asoc.2009.10.018
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Syafiie, S.; Tadeo, F.; Martínez, Ernesto Carlos; Alvarez, T.; Model-free control based on reinforcement learning for a wastewater treatment problem; Elsevier Science; Applied Soft Computing; 11; 1; 1-2011; 73-82
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES