Mostrar el registro sencillo del ítem

dc.contributor.author
Harris, Darby M.  
dc.contributor.author
Corbin, Kendall  
dc.contributor.author
Wang, Tuo  
dc.contributor.author
Gutierrez, Ryan  
dc.contributor.author
Bertolo, Ana L.  
dc.contributor.author
Petti, Carloalberto  
dc.contributor.author
Smilgies, Detlef M.  
dc.contributor.author
Estevez, Jose Manuel  
dc.contributor.author
Bonetta, Dario  
dc.contributor.author
Urbanowicz, Breeanna R.  
dc.contributor.author
Ehrhardt, David W.  
dc.contributor.author
Somerville, Chris R.  
dc.contributor.author
Rose, Jocelyn K. C.  
dc.contributor.author
Hong, Mei  
dc.contributor.author
DeBolt, Seth  
dc.date.available
2019-02-13T19:35:39Z  
dc.date.issued
2012-03  
dc.identifier.citation
Harris, Darby M.; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana L.; et al.; Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 109; 11; 3-2012; 4098-4103  
dc.identifier.issn
0027-8424  
dc.identifier.uri
http://hdl.handle.net/11336/70115  
dc.description.abstract
The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1 A903V and CESA3 T942I in Arabidopsis thaliana. Using 13C solidstate nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1 A903V and CESA3 T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1 A903Vand CESA3 T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
National Academy of Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cell Wall  
dc.subject
Polysaccharide  
dc.subject
Quinoxyphen  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-16T18:12:01Z  
dc.identifier.eissn
1091-6490  
dc.journal.volume
109  
dc.journal.number
11  
dc.journal.pagination
4098-4103  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington DC  
dc.description.fil
Fil: Harris, Darby M.. University of Kentucky; Estados Unidos  
dc.description.fil
Fil: Corbin, Kendall. University of Kentucky; Estados Unidos  
dc.description.fil
Fil: Wang, Tuo. University of Iowa; Estados Unidos  
dc.description.fil
Fil: Gutierrez, Ryan. Carnegie Institution for Science; Estados Unidos  
dc.description.fil
Fil: Bertolo, Ana L.. Cornell University; Estados Unidos  
dc.description.fil
Fil: Petti, Carloalberto. University of Kentucky; Estados Unidos  
dc.description.fil
Fil: Smilgies, Detlef M.. Cornell University; Estados Unidos  
dc.description.fil
Fil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina  
dc.description.fil
Fil: Bonetta, Dario. University Of Ontario Institute Of Technology; Canadá  
dc.description.fil
Fil: Urbanowicz, Breeanna R.. Cornell University; Estados Unidos. University of Georgia; Estados Unidos  
dc.description.fil
Fil: Ehrhardt, David W.. Carnegie Institution for Science; Estados Unidos  
dc.description.fil
Fil: Somerville, Chris R.. University of California at Berkeley; Estados Unidos  
dc.description.fil
Fil: Rose, Jocelyn K. C.. Cornell University; Estados Unidos  
dc.description.fil
Fil: Hong, Mei. University of Iowa; Estados Unidos  
dc.description.fil
Fil: DeBolt, Seth. University of Kentucky; Estados Unidos  
dc.journal.title
Proceedings of the National Academy of Sciences of The United States of America  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1073/pnas.1200352109  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/109/11/4098