Mostrar el registro sencillo del ítem
dc.contributor.author
Harris, Darby M.
dc.contributor.author
Corbin, Kendall
dc.contributor.author
Wang, Tuo
dc.contributor.author
Gutierrez, Ryan
dc.contributor.author
Bertolo, Ana L.
dc.contributor.author
Petti, Carloalberto
dc.contributor.author
Smilgies, Detlef M.
dc.contributor.author
Estevez, Jose Manuel

dc.contributor.author
Bonetta, Dario
dc.contributor.author
Urbanowicz, Breeanna R.
dc.contributor.author
Ehrhardt, David W.
dc.contributor.author
Somerville, Chris R.
dc.contributor.author
Rose, Jocelyn K. C.
dc.contributor.author
Hong, Mei
dc.contributor.author
DeBolt, Seth
dc.date.available
2019-02-13T19:35:39Z
dc.date.issued
2012-03
dc.identifier.citation
Harris, Darby M.; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana L.; et al.; Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 109; 11; 3-2012; 4098-4103
dc.identifier.issn
0027-8424
dc.identifier.uri
http://hdl.handle.net/11336/70115
dc.description.abstract
The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1 A903V and CESA3 T942I in Arabidopsis thaliana. Using 13C solidstate nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1 A903V and CESA3 T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1 A903Vand CESA3 T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
National Academy of Sciences

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Cell Wall
dc.subject
Polysaccharide
dc.subject
Quinoxyphen
dc.subject.classification
Otras Ciencias Biológicas

dc.subject.classification
Ciencias Biológicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-01-16T18:12:01Z
dc.identifier.eissn
1091-6490
dc.journal.volume
109
dc.journal.number
11
dc.journal.pagination
4098-4103
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Washington DC
dc.description.fil
Fil: Harris, Darby M.. University of Kentucky; Estados Unidos
dc.description.fil
Fil: Corbin, Kendall. University of Kentucky; Estados Unidos
dc.description.fil
Fil: Wang, Tuo. University of Iowa; Estados Unidos
dc.description.fil
Fil: Gutierrez, Ryan. Carnegie Institution for Science; Estados Unidos
dc.description.fil
Fil: Bertolo, Ana L.. Cornell University; Estados Unidos
dc.description.fil
Fil: Petti, Carloalberto. University of Kentucky; Estados Unidos
dc.description.fil
Fil: Smilgies, Detlef M.. Cornell University; Estados Unidos
dc.description.fil
Fil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
dc.description.fil
Fil: Bonetta, Dario. University Of Ontario Institute Of Technology; Canadá
dc.description.fil
Fil: Urbanowicz, Breeanna R.. Cornell University; Estados Unidos. University of Georgia; Estados Unidos
dc.description.fil
Fil: Ehrhardt, David W.. Carnegie Institution for Science; Estados Unidos
dc.description.fil
Fil: Somerville, Chris R.. University of California at Berkeley; Estados Unidos
dc.description.fil
Fil: Rose, Jocelyn K. C.. Cornell University; Estados Unidos
dc.description.fil
Fil: Hong, Mei. University of Iowa; Estados Unidos
dc.description.fil
Fil: DeBolt, Seth. University of Kentucky; Estados Unidos
dc.journal.title
Proceedings of the National Academy of Sciences of The United States of America

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1073/pnas.1200352109
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/109/11/4098
Archivos asociados