Artículo
Prediction with measurement errors in finite populations
Singer, Julio M.; Stanek III, Edward J.; Lencina, Viviana Beatriz
; González, Luz Mery; Li, Wenjun; San Martino, Silvina
Fecha de publicación:
02/2012
Editorial:
Elsevier Science
Revista:
Statistics & Probability Letters
ISSN:
0167-7152
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors.
Palabras clave:
Finite Population
,
Heteroskedasticity
,
Superpopulation
,
Unbiasedness
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Citación
Singer, Julio M.; Stanek III, Edward J.; Lencina, Viviana Beatriz; González, Luz Mery; Li, Wenjun; et al.; Prediction with measurement errors in finite populations; Elsevier Science; Statistics & Probability Letters; 82; 2; 2-2012; 332-339
Compartir
Altmétricas