Artículo
On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study
Fecha de publicación:
10/2015
Editorial:
MDPI
Revista:
Econometrics
ISSN:
2225-1146
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper evaluates bootstrap inference methods for quantile regression panel data models. We propose to construct confidence intervals for the parameters of interest using percentile bootstrap with pairwise resampling. We study three different bootstrapping procedures. First, the bootstrap samples are constructed by resampling only from cross-sectional units with replacement. Second, the temporal resampling is performed from the time series. Finally, a more general resampling scheme, which considers sampling from both the cross-sectional and temporal dimensions, is introduced. The bootstrap algorithms are computationally attractive and easy to use in practice. We evaluate the performance of the bootstrap confidence interval by means of Monte Carlo simulations. The results show that the bootstrap methods have good finite sample performance for both location and location-scale models.
Palabras clave:
Quantile Regression
,
Panel Data
,
Fixed Effects
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Galvao, Antonio; Montes Rojas, Gabriel Victorio; On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study; MDPI; Econometrics; 3; 3; 10-2015; 654-666
Compartir
Altmétricas