Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Autoscaling scientific workflows on the cloud by combining on-demand and spot instances

Monge Bosdari, David AntonioIcon ; Garí Núñez, YiselIcon ; Mateos Diaz, Cristian MaximilianoIcon ; Garcia Garino, Carlos GabrielIcon
Fecha de publicación: 02/2017
Editorial: C R L Publishing Ltd
Revista: Computer Systems Science And Engineering
ISSN: 0267-6192
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Autoscaling strategies achieve efficient and cheap executions of scientific workflows running in the cloud by determining appropriate type and amount of virtual machine instances to use while scheduling the tasks/data . Current strategies only consider on-demand instances ignoring the advantages of a mixed cloud infrastructure comprising also spot instances. Although the latter type of instances are subject to failures and therefore provide an unreliable infrastructure, they potentially offer significant cost and time improvements if used wisely. This paper discusses a novel autoscaling strategy with two features. First, it combines both types of instances to acquire a better cost-performance balance in the infrastructure. And second, it uses heuristic scheduling to deal with the unreliability of spot instances. Simulated experiments based on 4 scientific workflows showed substantial makespan and cost reductions of our strategy when compared with a reference strategy from the state of the art entitled Scaling First. These promising results represent a step towards new and better strategies for workflow autoscaling in the cloud.
Palabras clave: Scientific Workflows , Cloud Computing , Autoscaling , Scheduling , Spot Instances
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.834Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/69858
URL: http://crl-publishing.co.uk/csse-journal/
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Monge Bosdari, David Antonio; Garí Núñez, Yisel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Autoscaling scientific workflows on the cloud by combining on-demand and spot instances; C R L Publishing Ltd; Computer Systems Science And Engineering; 32; 4; 2-2017; 1-16
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES