Artículo
Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction
Mendez Garabetti, Miguel; Bianchini, German; Tardivo, María Laura
; Caymes Scutari, Paola Guadalupe
; Gil Costa, Graciela Verónica
Fecha de publicación:
04/2017
Editorial:
Ibero-American Science and Technology Education Consortium
Revista:
Journal of Computer Science & Technology
ISSN:
1666-6046
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Mendez Garabetti, Miguel; Bianchini, German; Tardivo, María Laura; Caymes Scutari, Paola Guadalupe; Gil Costa, Graciela Verónica; Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction; Ibero-American Science and Technology Education Consortium; Journal of Computer Science & Technology; 17; 1; 4-2017; 12-19
Compartir