Mostrar el registro sencillo del ítem

dc.contributor.author
Ceretani, Andrea Noemí  
dc.contributor.author
Tarzia, Domingo Alberto  
dc.date.available
2019-02-11T13:02:10Z  
dc.date.issued
2017-04  
dc.identifier.citation
Ceretani, Andrea Noemí; Tarzia, Domingo Alberto; Determination of two unknown thermal coefficients through an inverse one-phase fractional Stefan problem; De Gruyter; Fractional Calculus an Applied Analysis; 20; 2; 4-2017; 399-421  
dc.identifier.issn
1311-0454  
dc.identifier.uri
http://hdl.handle.net/11336/69827  
dc.description.abstract
We consider a semi-infinite one-dimensional phase-change material with two unknown constant thermal coefficients among the latent heat per unit mass, the specific heat, the mass density and the thermal conductivity. Aiming at the determination of them, we consider an inverse one-phase Stefan problem with an over-specified condition at the fixed boundary and a known evolution for the moving boundary. We assume that it is given by a sharp front and we consider a time fractional derivative of order α (0 < α < 1) in the Caputo sense to represent the temporal evolution of the temperature as well as the moving boundary. This might be interpreted as the consideration of latent-heat memory effects in the development of the phase-change process. According to the choice of the unknown thermal coefficients, six inverse fractional Stefan problems arise. For each of them, we determine necessary and sufficient conditions on data to obtain the existence and uniqueness of a solution of similarity type. Moreover, we present explicit expressions for the temperature and the unknown thermal coefficients. Finally, we show that the results for the classical statement of this problem, associated with α = 1, are obtained through the fractional model when α → 1-.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
De Gruyter  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Explicit Solutions  
dc.subject
Inverse Stefan Problems  
dc.subject
Over-Specified Boundary Conditions  
dc.subject
Time Fractional Caputo Derivative  
dc.subject
Unknownthermal Coefficients  
dc.subject
Wright And Mainardi Functions  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Determination of two unknown thermal coefficients through an inverse one-phase fractional Stefan problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-12-19T13:04:25Z  
dc.identifier.eissn
1314-2224  
dc.journal.volume
20  
dc.journal.number
2  
dc.journal.pagination
399-421  
dc.journal.pais
Bulgaria  
dc.journal.ciudad
Sofía  
dc.description.fil
Fil: Ceretani, Andrea Noemí. Universidad Austral; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.journal.title
Fractional Calculus an Applied Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1515/fca-2017-0021  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/fca.2017.20.issue-2/fca-2017-0021/fca-2017-0021.xml