Mostrar el registro sencillo del ítem
dc.contributor.author
Ceretani, Andrea Noemí
dc.contributor.author
Tarzia, Domingo Alberto
dc.date.available
2019-02-11T13:02:10Z
dc.date.issued
2017-04
dc.identifier.citation
Ceretani, Andrea Noemí; Tarzia, Domingo Alberto; Determination of two unknown thermal coefficients through an inverse one-phase fractional Stefan problem; De Gruyter; Fractional Calculus an Applied Analysis; 20; 2; 4-2017; 399-421
dc.identifier.issn
1311-0454
dc.identifier.uri
http://hdl.handle.net/11336/69827
dc.description.abstract
We consider a semi-infinite one-dimensional phase-change material with two unknown constant thermal coefficients among the latent heat per unit mass, the specific heat, the mass density and the thermal conductivity. Aiming at the determination of them, we consider an inverse one-phase Stefan problem with an over-specified condition at the fixed boundary and a known evolution for the moving boundary. We assume that it is given by a sharp front and we consider a time fractional derivative of order α (0 < α < 1) in the Caputo sense to represent the temporal evolution of the temperature as well as the moving boundary. This might be interpreted as the consideration of latent-heat memory effects in the development of the phase-change process. According to the choice of the unknown thermal coefficients, six inverse fractional Stefan problems arise. For each of them, we determine necessary and sufficient conditions on data to obtain the existence and uniqueness of a solution of similarity type. Moreover, we present explicit expressions for the temperature and the unknown thermal coefficients. Finally, we show that the results for the classical statement of this problem, associated with α = 1, are obtained through the fractional model when α → 1-.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Explicit Solutions
dc.subject
Inverse Stefan Problems
dc.subject
Over-Specified Boundary Conditions
dc.subject
Time Fractional Caputo Derivative
dc.subject
Unknownthermal Coefficients
dc.subject
Wright And Mainardi Functions
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Determination of two unknown thermal coefficients through an inverse one-phase fractional Stefan problem
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-12-19T13:04:25Z
dc.identifier.eissn
1314-2224
dc.journal.volume
20
dc.journal.number
2
dc.journal.pagination
399-421
dc.journal.pais
Bulgaria
dc.journal.ciudad
Sofía
dc.description.fil
Fil: Ceretani, Andrea Noemí. Universidad Austral; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.journal.title
Fractional Calculus an Applied Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1515/fca-2017-0021
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/fca.2017.20.issue-2/fca-2017-0021/fca-2017-0021.xml
Archivos asociados