Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A CPU–GPU framework for optimizing the quality of large meshes

D'amato, Juan PabloIcon ; Venere, Marcelo
Fecha de publicación: 03/2013
Editorial: Elsevier
Revista: Journal Of Parallel And Distributed Computing
ISSN: 0743-7315
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

The automatic generation of 3D finite element meshes (FEM) is still a bottle neck for the simulation of large fluid-dynamic problems. Although today there are several algorithms that can generate good meshes without user intervention, in cases where the geometry changes during the calculation and thousands of meshes must be constructed, the computational cost of this process can exceed the cost of the FEM. There has been a lot of work in FEM parallelization and the algorithms work well in different parallel architectures, but at present there has not been much success in the parallelization of mesh generation methods. This paper will present a massive parallelization scheme for re-meshing with tetrahedral elements using the local modification algorithm. This method is frequently used to improve the quality of elements once the mesh has been generated, but we will show it can also be applied as a re-generation process, starting with the distorted and invalid mesh of the previous step. The parallelization is carried out using OpenCL and OpenMP in order to test the method in multiple CPU architecture and also in Graphic Processors (GPU). Finally we present the speedup and quality results obtained in meshes with hundreds of thousands of elements and different parallel APIs.
Palabras clave: Parallelism , Re-Meshing , Quality , Gpu
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.990Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/6967
DOI: http://dx.doi.org/10.1016/j.jpdc.2013.03.007
DOI: http://dx.doi.org/ 10.1016/j.jpdc.2013.03.007
URL: http://www.sciencedirect.com/science/article/pii/S0743731513000518
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
D'amato, Juan Pablo; Venere, Marcelo; A CPU–GPU framework for optimizing the quality of large meshes; Elsevier; Journal Of Parallel And Distributed Computing; 73; 8; 3-2013; 1127-1134
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES