Artículo
On the polynomial lindenstrauss theorem
Fecha de publicación:
10/2012
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Functional Analysis
ISSN:
0022-1236
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Under certain hypotheses on the Banach space X, we show that the set of N-homogeneous polynomials from X to any dual space, whose Aron-Berner extensions are norm attaining, is dense in the space of all continuous N-homogeneous polynomials. To this end we prove an integral formula for the duality between tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there is no polynomial Bishop-Phelps theorem, but our results apply. Finally we address quantitative versions, in the sense of Bollobás, of these results.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Carando, Daniel Germán; Lassalle, Silvia Beatriz; Mazzitelli, Martin Diego; On the polynomial lindenstrauss theorem; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 263; 7; 10-2012; 1809-1824
Compartir
Altmétricas