Artículo
Continuity and differentiability of regression M functionals
Fecha de publicación:
11/2012
Editorial:
Institute of Mathematical Statistics
Revista:
Bernoulli - Mathematical Statistics And Probability
ISSN:
1350-7265
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper deals with the Fisher-consistency, weak continuity and differentiability of estimating functionals corresponding to a class of both linear and nonlinear regression high breakdown M estimates, which includes S and MM estimates. A restricted type of differentiability, called weak differentiability, is defined, which suffices to prove the asymptotic normality of estimates based on the functionals. This approach allows to prove the consistency, asymptotic normality and qualitative robustness of M estimates under more general conditions than those required in standard approaches. In particular, we prove that regression MMestimates are asymptotically normal when the observations are φ-mixing.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Fasano, Maria Victoria; Maronna, Ricardo Antonio; Sued, Raquel Mariela; Yohai, Victor Jaime; Continuity and differentiability of regression M functionals; Institute of Mathematical Statistics; Bernoulli - Mathematical Statistics And Probability; 18; 4; 11-2012; 1284-1309
Compartir
Altmétricas