Mostrar el registro sencillo del ítem
dc.contributor.author
Anun, Matias
dc.contributor.author
Ordonez, Martin
dc.contributor.author
Zurbriggen, Ignacio Galiano
dc.contributor.author
Oggier, German Gustavo
dc.date.available
2019-02-04T18:49:08Z
dc.date.issued
2015-08
dc.identifier.citation
Anun, Matias; Ordonez, Martin; Zurbriggen, Ignacio Galiano; Oggier, German Gustavo; Circular Switching Surface Technique: High-Performance Constant Power Load Stabilization for Electric Vehicle Systems; Institute of Electrical and Electronics Engineers; IEEE Transactions on Power Electronics; 30; 8; 8-2015; 4560-4572
dc.identifier.issn
0885-8993
dc.identifier.uri
http://hdl.handle.net/11336/69343
dc.description.abstract
Electric vehicles make use of energy storage systems, such as batteries and/or ultracapacitors to power the electric power drive train, as well as auxiliary automotive system for control, safety, and comfort. This relatively complex power structure can be described as a distributed multiconverter system. The constant power behavior of tight-speed controllers in the vehicle's traction system and tightly regulated dc-dc converters connected to the HV-DC bus produces instability effects. This paper proposes a simple and practical geometric control, using circular switching surfaces, to address constant power load instability in electric vehicle's power systems. The proposed switching surfaces provide a solution in the geometrical domain to constant power loading conditions, while achieving outstanding dynamic response compared to state-of-the-art controllers. The controller is implemented in a bidirectional Buck + Boost cascade converter as a battery charge/discharge unit and ensures reliable system operation. The predictable and consistent behavior of the converter with constant power load is presented by analyzing the system curves in the normalized state plane with the switching surfaces employed. Simulation and experimental results on a scaled 1-kW Buck + Boost cascade converter validate the proposed switching surfaces and predictions regarding the converter's behavior under constant power loading conditions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Battery Management Systems
dc.subject
Boundary Control
dc.subject
Circular Switching Surfaces (Css)
dc.subject
Constant Power Load (Cpl)
dc.subject
Dc-Dc Power Converters
dc.subject
Dc-Link Capacitance
dc.subject
Electric Vehicles (Evs)
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Circular Switching Surface Technique: High-Performance Constant Power Load Stabilization for Electric Vehicle Systems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-02-04T13:14:30Z
dc.identifier.eissn
1941-0107
dc.journal.volume
30
dc.journal.number
8
dc.journal.pagination
4560-4572
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Anun, Matias. University of British Columbia; Canadá
dc.description.fil
Fil: Ordonez, Martin. University of British Columbia; Canadá
dc.description.fil
Fil: Zurbriggen, Ignacio Galiano. University of British Columbia; Canadá
dc.description.fil
Fil: Oggier, German Gustavo. University of British Columbia; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
IEEE Transactions on Power Electronics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TPEL.2014.2358259
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/6901294/
Archivos asociados