Mostrar el registro sencillo del ítem

dc.contributor.author
Martinez, Ernesto Carlos  
dc.contributor.author
Cristaldi, Mariano Daniel  
dc.contributor.author
Grau, Ricardo José Antonio  
dc.date.available
2016-08-03T21:19:38Z  
dc.date.issued
2013-01  
dc.identifier.citation
Martinez, Ernesto Carlos; Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 49; 1-2013; 37-49  
dc.identifier.issn
0098-1354  
dc.identifier.uri
http://hdl.handle.net/11336/6912  
dc.description.abstract
Due to the complexity of metabolic regulation, first-principles models of bioreactor dynamics typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates imperfect models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information and performance. The proposed Bayesian decision-theoretic approach resorts to probabilistic tendency models that explicitly characterize their levels of confidence. Bootstrapping of parameter distributions is used to represent parametric uncertainty as histograms. The Bajpai & Reuss bioreactor model for penicillin production validated with industrial data is used as a representative case study. Run-to-run convergence to an improved policy is fast despite significant modeling errors as long as data are used to revise iteratively posterior distributions of the most influencing model parameters.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
BAYESIAN INFERENCE  
dc.subject
EXPERIMENTAL DESIGN  
dc.subject
FED-BATCH FERMENTATION  
dc.subject
MODELING FOR OPTIMIZATION  
dc.subject
RUN-TO-RUN OPTIMIZATION  
dc.subject
SENSITIVITY ANALYSIS  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-08-01T18:35:47Z  
dc.journal.volume
49  
dc.journal.pagination
37-49  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
Computers and Chemical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135412002888  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compchemeng.2012.09.010